点击下方卡片,关注“CVer”公众号
AI/CV重磅干货,第一时间送达
添加微信:CVer2233,助手会拉你进群!
扫描下方二维码,加入CVer学术星球!可获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪必备!
光场图像超分辨挑战赛 (Light Field Image Super-Resolution Challenge)将作为NTIRE研讨会的一部分,与CVPR 2025一起举办。NTIRE全称New Trends in Image Restoration and Enhancement,是近年来图像复原领域最具影响力的一项全球性赛事。
大赛背景:
随着相机制造技术的不断进步,光场成像技术日益普及,并广泛应用于手机、自动驾驶、机器人、VR/AR等领域。由于光场相机可以在不同视角记录场景图像,因此可以通过利用视角间的互补信息来提高图像的分辨率。光场图像超分辨旨在从低分辨率的光场图像中重建出高分辨率的光场图像。
我们联合NTIRE研讨会,为光场领域组织了一场以提高图像分辨率为重点的挑战赛,以突出光场图像超分辨面临的具体挑战和研究问题。这次挑战赛为研究人员提供了一个分享专业知识、提升算法性能的机会,旨在促进光场图像超分辨领域的发展。
大赛介绍:
这次挑战赛的目的是从低分辨率(LR)光场图像中重建出高分辨率(HR)光场图像。在模型开发阶段,将发布训练集和验证集。参赛者可利用训练集进行模型训练,并将验证集上的超分辨结果提交至CodaLab服务器进行评估。在测试阶段,竞赛组织者将发布测试集。参赛者可利用训练好的模型对低分辨率测试图像进行超分辨,并提交超分辨后的图像,由组织者统一进行定量评估与排名。
赛道介绍:
本届光场图像超分辨挑战赛共设经典、轻量化、大模型共三个赛道。
经典赛道:https://codalab.lisn.upsaclay.fr/competitions/21276,本赛道对模型参数量和计算量无要求,但是要求选手只能在指定训练集上开发模型,禁止使用预训练模型或使用训练集之外的数据训练模型;
轻量化赛道:https://codalab.lisn.upsaclay.fr/competitions/21277,本赛道要求模型参数量不超过1M,且要求选手只能在指定训练集上开发模型,禁止使用预训练模型或使用训练集之外的数据训练模型;
大模型赛道:https://codalab.lisn.upsaclay.fr/competitions/21278,本赛道对模型参数量和计算量无要求,允许使用额外训练数据或预训练模型,但不允许使用验证集和测试集的图像进行训练;
本次比赛采用双三次下采样生成低分辨率图像,采用峰值信噪比作为主要评价指标,结构相似度作为辅助评价指标,评价每个视角的超分辨图像与高分辨率真实图像之间的误差。
大赛官网:
NTIRE官网:https://cvlai.net/ntire/2025/
CodaLab网址:
经典赛道:https://codalab.lisn.upsaclay.fr/competitions/21276;
轻量化赛道:https://codalab.lisn.upsaclay.fr/competitions/21277;
大模型赛道:https://codalab.lisn.upsaclay.fr/competitions/21278;
光场挑战赛Github仓库:https://github.com/SYSU-SAIL/LF-Image-SR/blob/NTIRE2025/
赛程安排(以官网信息为准):
2025-01-30: 开放在线验证平台
2025-03-14: 开放测试集,关闭验证平台
2025-03-21: 测试结果提交截止日期
2025-03-21: 算法文档/代码/模型提交截止日期
2025-03-24: 公布比赛成绩及排名
2025-04-01: 论文提交截止日期
2025-06: CVPR Workshop日期
大赛要求:
本次挑战赛面向全社会开放,个人、高等院校、科研单位、企业等人员均可报名参赛。每位参赛者只能加入1支队伍,每支队伍最多不超过6人,每支队伍只能提交一种算法进行最终排名。
大赛奖励:
发表论文是可选的,不会成为参加挑战赛或获奖的条件。本次挑战赛将邀请排名靠前的参赛者向NTIRE Workshop提交最多8页的论文,以供同行评审。论文录用后将发表在CVPR 2025 Workshop论文集中。
排名最高的参赛者和为比赛贡献新颖方法的参赛者将被邀请成为挑战赛报告论文的共同作者,该论文将在CVPR 2025 Workshop集中发表。
本次比赛的赞助商详见NTIRE 2025官网,如有额外的经济奖励和旅行补助将由NTIRE官方统一提供和发放。
大赛组织者:
Yingqian Wang (wangyingqian16@nudt.edu.cn)
Zhengyu Liang (zyliang@nudt.edu.cn)
Longguang Wang (wanglongguang15@nudt.edu.cn)
Juncheng Li (junchengli@shu.edu.cn)
Jungang Yang (yangjungang@nudt.edu.cn)
Radu Timofte (Radu.Timofte@vision.ee.ethz.ch)
Yulan Guo (guoyulan@sysu.edu.cn)
大赛交流群:
欢迎大家积极参赛,如群满或二维码到期请通过邮箱与我们联系加群!
何恺明在MIT授课的课件PPT下载
在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!
ECCV 2024 论文和代码下载
在CVer公众号后台回复:ECCV2024,即可下载ECCV 2024论文和代码开源的论文合集
CVPR 2024 论文和代码下载
在CVer公众号后台回复:CVPR2024,即可下载CVPR 2024论文和代码开源的论文合集
超分辨率交流群成立
扫描下方二维码,或者添加微信号:CVer2233,即可添加CVer小助手微信,便可申请加入CVer-超分辨率微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如超分辨率+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲扫码或加微信号: CVer2233,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集上万人!
▲扫码加入星球学习
▲点击上方卡片,关注CVer公众号
整理不易,请赞和在看