点击下方卡片,关注“CVer”公众号
AI/CV重磅干货,第一时间送达
添加微信号:CVer2233,小助手会拉你进群!
扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!
转载自:机器之心
嘿,各位开发小伙伴,今天要给大家安利一个全新的开源项目 ——VLM-R1!它将 DeepSeek 的 R1 方法从纯文本领域成功迁移到了视觉语言领域,这意味着打开了对于多模态领域的想象空间!
https://github.com/om-ai-lab/VLM-R1
这个项目的灵感来自去年 DeepSeek 开源的那个 R1 方法,靠着 GRPO(Group Relative Policy Optimization)强化学习方法,在纯文本大模型上取得了惊人的效果。
现在,VLM-R1 团队直接把它应用到了视觉语言模型上,打开了一扇新的大门!
VLM-R1 验证结果惊艳
这个项目的团队在 Qwen2.5-VL 的基础上,同时对比了 R1 和传统的 SFT 方法。结果相当惊艳:
1、稳定性拉满:R1 方法在各种复杂场景下都能保持稳定的高性能,这在实际应用至关重要!
2. 泛化能力卓越:更让人震惊的是,在领域外的测试数据上,随着训练步数增加,传统 SFT 模型的性能开始下滑,而 R1 模型却能持续提升!这意味着 R1 方法帮助模型真正 “学会” 了理解视觉内容,而不是简单地记忆!
(训练和测试领域的差异对比)
(泛化性对比,绿线是 VLM-R1,在领域外泛化性显著更优)
3、上手超简单:VLM-R1 项目团队还贴心地提供了完整的训练和评估流程,四步就能开始训练,对开发者十分友好。
小编亲测之后,在此分享一个实际案例,结果让人意外。
图片里展示了一桌子丰盛的美食,包括各种蔬菜、面饼和点心。针对图片,我们向模型提出了一个问题:“在图片中找出蛋白质含量最高的食物”。
模型不仅回答得准确:
“图片中展示了桌上的各种菜品,包括蔬菜、面饼和点心。从蛋白质含量来看,面饼或面点可能含量最高,因为它们通常由全谷物制成,面粉中含有蛋白质。虽然蔬菜也含有蛋白质,但比起这些主食来说含量较少。”
更厉害的是,它还精准地在图片中框选出了那个蛋白质含量最高的鸡蛋饼!
这种精确的视觉理解能力和推理能力,让人印象深刻!
完美展示了 VLM-R1 在实际应用中的优势:
准确的视觉识别能力
专业的知识推理能力
清晰的文本表达能力
全新思路
作为一个 AI 领域的观察者,VLM-R1 的出现也为开发者和行业提供了许多新的思路,比如:
1、证明了 R1 方法的通用性,不止文本领域玩得转;
2、为多模态模型的训练提供了新思路;
3、或许能够引领一种全新的视觉语言模型训练潮流;
完全开源
最棒的是,这个优秀的项目完全开源!
项目地址:https://github.com/om-ai-lab/VLM-R1
对视觉语言模型感兴趣的同学,强烈建议去看看这个项目。说不定你的下一个突破性研究就从这里开始!
何恺明在MIT授课的课件PPT下载
在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!
ECCV 2024 论文和代码下载
在CVer公众号后台回复:ECCV2024,即可下载ECCV 2024论文和代码开源的论文合集
CVPR 2024 论文和代码下载
在CVer公众号后台回复:CVPR2024,即可下载CVPR 2024论文和代码开源的论文合集
多模态和论文投稿交流群成立
扫描下方二维码,或者添加微信号:CVer2233,即可添加CVer小助手微信,便可申请加入CVer-多模态和论文投稿微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如Mamba、多模态学习或者论文投稿+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲扫码或加微信号: CVer2233,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集上万人!
▲扫码加入星球学习
▲点击上方卡片,关注CVer公众号
整理不易,请赞和在看