CVPR 2025 | 无需物理引擎,一个模型搞定图像渲染与分解!

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【顶会/顶刊】投稿交流群

添加微信号:CVer2233,小助手会拉你进群!

扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!

图片

Uni-Renderer团队 投稿
转载自:量子位(QbitAI)

无需物理引擎,单个模型也能实现“渲染+逆渲染”了!

在计算机图形和视觉领域,渲染是指将3D模型变成逼真的2D图片,逆渲染则是从2D图片分析出3D模型的各种属性(如材质、光照等)。

现在,从材质分解(逆渲染)——材质编辑——物体渲染的整个流程,都被统一到了一个框架中,且在性能方面达到了新SOTA。

该研究出自港科大广州以及趣丸科技,他们首创双流扩散框架Uni-Renderer,将渲染(生成图像)与逆渲染(分解材质、光照、几何)统一到单一扩散框架,实现“生成即分解”的闭环能力。

相关成果已被CVPR 2025接收,代码与数据全面开源。

研究团队表示,这一成果未来将重塑影视、游戏、AR/VR等产业的视觉生成管线。

首创双流扩散框架

正如开头提到,渲染是通过光线追踪或路径追踪,生成高质量的图像;逆渲染是在RGB图像中提取出对象属性,比如金属度、粗糙度以及光照细节。

传统方法需独立建模训练渲染器与逆渲染器,计算成本高效率低泛化差,两个过程也缺乏联系,精度和属性分解效果都有限。

而Uni-Renderer的双流扩散架构将两个过程建模为双条件生成任务,生成时以材质、光照为条件输出图像,分解时以图像为条件反推内在属性:

其中渲染流负责生成RGB图像:以VAE编码材质、法线、光照为条件,通过扩散过程生成图像,支持动态调整粗糙度/金属值(如“光滑棒球”秒变“金属质感”)。

逆渲染流负责处理内在属性:以图像为输入,通过噪声预测网络分解属性, 并在网络内部进行跨流交互,实现信息传递融合优化协同。

此外,团队还采用了差异化的timestep调度策略,通过不同的timestep使模型区分渲染和逆渲染的映射关系,让这两者能更好协同。

最后,鉴于传统逆渲染因“材质-光照-几何”耦合性导致分解模糊。

因此,他们将逆渲染分解得到的属性,再次输入到渲染模块进行再渲染,并借助循环约束确保分解结果可重新生成一致图像,彻底告别“分解即失真”。

实测对比,性能碾压SOTA

1、材质编辑

对比Subias(过曝)、InstructPix2Pix(背景错误),Uni-Renderer精准控制高光与漫反射,如下图中“金属橙子”表面反射环境光照,细节逼真。

2、重光照

如下图所示,输入单张图像,直接替换环境光为“夕阳/霓虹”,模型自动调整漫反射与镜面反射,光影过渡自然,超越NvDiffRec的生硬效果。

3、真实场景

下图中,“水壶”逆渲染成功解析高频环境光,金属质感与粗糙度误差仅3%。

概括而言,通过在生成阶段,以材质、光照为条件输出图像;分解阶段,以图像为条件反推内在属性,效率提升了200%

同时,Uni-Renderer强制内在属性与图像的一致性,在公开测试集上材质估计误差降低40%,光照分解PSNR提升30%。

另外,研究基于Objaverse构建业界最大规模多材质合成数据集,涵盖20万3D对象、121种材质/光照组合,支持高分辨率(1024×1024)训练。模型在未见过的真实场景中(如金属水壶、手机支架)仍能精准分解高光、粗糙度与复杂光照。

在渲染任务中,PSNR达30.72(对比基线28.09),逆渲染任务中,材质估计MSE仅0.118(优化方法0.316);重光照效果超越GaussianShader等方案,真实感拉满。

开源即用

目前团队对Uni-renderer同步进行了开源,包括:

  • 代码库:支持一键训练/推理,兼容PyTorch生态;

  • 合成数据集:20万对象+百万级材质-光照组合,涵盖数理化生多领域;

  • 预训练模型:即插即用于游戏资产生成、影视后期、工业设计等场景。

这项研究的作者为陈知非, 许添硕以及葛汶杭,他们是来自于香港科技大学(广州)ENVISION实验室的博士生,师从陈颖聪教授。

(ENVISION实验室专注于视觉生成模型的研究,致力于探索其基本原理,以提高模型的质量、效率、多样性和可控性。)

小结一下,Uni-Renderer的提出,标志着视觉生成与解析从“分而治之”迈入“统一智能”时代。

其双流架构与循环约束机制,为跨任务联合优化提供了全新范式。

未来,团队将进一步融合真实数据,攻克复杂动态场景,让人工智能成为“全能视觉工程师”。

论文链接:
https://arxiv.org/pdf/2412.15050
GitHub代码:
https://yuevii.github.io/unirenderer-page/

实验室官网:https://envision-research.hkust-gz.edu.cn/index.html#news

何恺明在MIT授课的课件PPT下载

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

CVPR 2025 论文和代码下载

在CVer公众号后台回复:CVPR2025,即可下载CVPR 2025论文和代码开源的论文合集

ECCV 2024 论文和代码下载

在CVer公众号后台回复:ECCV2024,即可下载ECCV 2024论文和代码开源的论文合集

CV垂直方向和论文投稿交流群成立

扫描下方二维码,或者添加微信号:CVer2233,即可添加CVer小助手微信,便可申请加入CVer-垂直方向和论文投稿微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如Mamba、多模态学习或者论文投稿+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer2233,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集上万人!

▲扫码加入星球学习

▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看
<think>好的,我需要处理用户关于CVPR 2025重构扩散模型的研究或论文的查询。首先,我需要确认用户的问题:他们想了解CVPR 2025中关于新的重建扩散模型的研究或论文。不过,CVPR 2025还没有召开,相关论文可能还未发布,因此我需要解释这一点。 接下来,我需要回顾现有的相关研究,特别是2023和2024年的进展,因为这些可能为2025年的趋势提供线索。用户提供的引用中有几篇论文,例如Self-Supervised Visibility Learning和Fast3R,虽然这些不是直接关于扩散模型的,但可能涉及重建技术,可以适当引用。 然后,我应该预测可能的趋势。扩散模型图像生成和3D重建中的应用正在增长,结合自监督学习或transformer结构可能是未来的方向。例如,Mask Transfiner在实例分割中的应用,可能扩展到扩散模型以提高重建质量。 此外,需要确保回答符合系统级指令,如使用正确的中文和LaTeX格式,生成相关问题。同时,用户希望结构清晰,分步骤解释,引用文献末尾添加标识。 最后,生成的相关问题应围绕扩散模型的应用、技术挑战、其他技术的结合等,帮助用户进一步探索。</think>[用户可见层] ### CVPR 2025关于重构扩散模型的研究展望 截至2024年7月,CVPR 2025的论文尚未公布,但基于当前研究趋势,重构扩散模型可能在以下方向取得进展: 1. **多模态融合扩散模型** 结合自监督学习和扩散过程,用于3D场景重建中的噪声过滤细节增强。例如,通过引入类似Self-Supervised Visibility Learning的可见性预测模块,提升对遮挡区域的重建精度[^1]。 2. **高效计算架构** 针对大规模3D重建(如1000+图像输入),可能发展类似Fast3R的单次前向传播架构,将扩散模型的迭代优化过程压缩到轻量级网络中[^2]。 3. **语义感知扩散** 在扩散过程中集成实例分割特征(如Mask Transfiner的边界优化策略),实现像素级语义控制的重建[^3]。数学表达可描述为: $$ p_\theta(x_{t-1}|x_t, S) = \mathcal{N}(x_{t-1}; \mu_\theta(x_t, S), \Sigma_\theta(x_t, S)) $$ 其中$S$为语义分割图。 4. **动态场景建模** 扩展传统静态重建,通过扩散模型的时间维度建模实现动态物体重建,可能引入隐式神经表示(NeRF)扩散过程的联合训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值