CVPR 2025 | 多视角目标跟踪新突破!MITracker:高效融合多视角特征,解决遮挡与目标丢失问题!

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【顶会/顶刊】投稿交流群

添加微信号:CVer2233,小助手会拉你进群!

扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!

图片

MITracker: Multi-View Integration for Visual Object Tracking

论文:https://arxiv.org/pdf/2502.20111

https://mii-laboratory.github.io/MITracker/

动机:

视觉目标跟踪是计算机视觉领域的核心任务之一,广泛应用于增强现实、自动驾驶等场景。然而,传统的单视角跟踪方法在面对遮挡、目标丢失等挑战时表现不佳。尽管多视角跟踪(MVOT)通过多视角信息的互补性提供了潜在的解决方案,但该领域的发展受到以下限制:

1. 数据集限制:现有的多视角数据集大多局限于特定类别(如行人或鸟类),缺乏通用性。

2. 方法限制:现有的多视角跟踪方法主要依赖于检测和重识别技术,难以实现类无关的目标跟踪。

3. 跨视角信息融合不足:现有的方法在跨视角信息融合方面效果有限,难以应对复杂的空间关系和视角变化。

为了解决这些问题,我们提出了一个新的多视角跟踪数据集 MVTrack 和一个高效的多视角跟踪方法 MITracker,旨在通过多视角信息的融合提升跟踪的鲁棒性和准确性。

本文贡献:

1. MVTrack数据集:我们构建了一个大规模的多视角跟踪数据集,包含234K高质量标注帧,涵盖27个不同类别的物体和9种具有挑战性的跟踪属性(如遮挡、变形等)。MVTrack是首个支持类无关多视角跟踪训练和评估的综合性数据集。

2. MITracker方法:我们提出了一种新颖的多视角跟踪方法MITracker,通过将2D图像特征转换为3D特征体积,并利用鸟瞰图(BEV)引导的多视角信息融合机制,显著提升了跟踪的稳定性和准确性。

3. 性能提升:MITracker在MVTrack和GMTD数据集上均达到了最先进的性能,特别是在遮挡和目标丢失等复杂场景下,恢复率从56.7%提升至79.2%。

MVTrack数据集特性: 

● 多视角数据:3-4个同步相机拍摄,确保多视角重叠。

● 丰富类别:涵盖27个日常物体,从小型物体(如笔)到大型物体(如雨伞)。 

● 高质量标注:每帧提供精确的2D边界框(BBox)和鸟瞰图(BEV)标注。

● 挑战性属性:包含9种常见的跟踪挑战,如背景杂乱、运动模糊、部分遮挡、完全遮挡、目标消失等。

● 大规模数据:包含260个视频,总计234,430帧,分为训练集、验证集和测试集。

MITracker方法亮点:      

1. 多视角特征融合:通过将多视角的2D特征投影到3D空间,并利用BEV引导的特征聚合,显著增强了模型的空间理解能力。

2. 空间增强注意力机制:通过引入3D感知的注意力机制,MITracker能够在目标丢失或遮挡的情况下快速恢复跟踪。

3. 高效跟踪:MITracker能够在任意长度的视频帧中跟踪任意物体,并在多视角场景下保持稳定的跟踪效果。

实验与结果:

我们在MVTrack和GMTD数据集上进行了广泛的实验,MITracker在多个评估指标上均达到了最先进的性能。特别是在多视角场景下,MITracker的表现显著优于现有的单视角跟踪方法,展示了其在复杂场景下的强大鲁棒性。


未来工作:

我们计划进一步扩展MVTrack数据集,增加室外场景和更多类别的物体,以提升模型的泛化能力。同时,我们也将探索减少对相机校准的依赖,使MITracker在更多实际场景中应用。

总结:

MITracker通过多视角信息的有效融合,解决了传统单视角跟踪中的遮挡和目标丢失问题,为多视角视觉目标跟踪领域提供了新的解决方案。我们相信,MVTrack数据集和MITracker方法将为未来的研究提供强有力的支持,推动视觉目标跟踪技术的进一步发展。

何恺明在MIT授课的课件PPT下载

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

CVPR 2025 论文和代码下载

在CVer公众号后台回复:CVPR2025,即可下载CVPR 2025论文和代码开源的论文合集

ECCV 2024 论文和代码下载

在CVer公众号后台回复:ECCV2024,即可下载ECCV 2024论文和代码开源的论文合集

CV垂直方向和论文投稿交流群成立

扫描下方二维码,或者添加微信号:CVer2233,即可添加CVer小助手微信,便可申请加入CVer-垂直方向和论文投稿微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如Mamba、多模态学习或者论文投稿+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer2233,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集上万人!

▲扫码加入星球学习

▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值