PINN全新突破,登上Nature大子刊!

PINN全新突破,登顶Nature大子刊!在锂电池的衰减建模和健康状态评估任务中,预测误差直降60%!

实际上,对PINN的改进,一直都是重要的研究方向!自其19年提出以来,引用量已经17000+了。

主要在于:一方面,其发展时间尚短,可挖掘的空间还很大。另一方面,其利用神经网络的强大拟合能力,结合物理信息来求解偏微分方程,为解决复杂物理系统的建模和求解提供了新路径。以往用传统方法求解的任务,都可以用PINN重做一遍!

目前热门的创新方向主要有2大类:PINN自身的改进(自适应PINN、优化与训练策略、采样与离散化);与其他技术结合(+贝叶斯、+频域、+GNN、+LSTM……)。为方便大家研究的进行,我给大家准备了140篇必读论文和源码,每种创新思路,都有相应的参考,一起来看!

扫描下方二维码,回复「物理神经」

免费获取全部论文合集及项目代码

PINN自身的改进

Adaptive Interface-PINNs (AdaI-PINNs): An Efficient Physics-informed Neural Networks Framework for Interface Problems

内容:这篇论文提出了一种名为“一致性模型”的新型生成模型,无需对抗训练即可在单步或多步中高质量生成样本,显著提升了扩散模型的采样速度。相比传统扩散模型需要数百步迭代,CMs 通过直接建模从噪声到数据的映射,实现了在单步生成中保持高样本质量,并在多步采样中通过迭代精炼进一步提升效果。实验表明,CMs 在 CIFAR-10、ImageNet 等数据集上达到了与现有最佳扩散模型相当的样本质量,同时采样速度提升 10-1000 倍,为生成模型的高效应用开辟了新途径。

Flow over an espresso cup: Inferring 3D  velocity and pressure fields from  tomographic background oriented schlieren  videos via physics-informed neural networks

内容:这篇论文提出了CLIP模型,通过对比学习在4亿对图文数据上训练,将图像和文本映射到共享语义空间,实现零样本图像分类、检索等任务。CLIP无需针对特定数据集微调,即可在ImageNet等30多项任务上媲美有监督ResNet50,展现强大的跨模态泛化能力,为多模态AI奠定基础。

扫描下方二维码,回复「物理神经」

免费获取全部论文合集及项目代码

PINN与其他技术结合

PHYSICS-INFORMED GNN FOR NON-LINEAR CON STRAINED OPTIMIZATION: PINCO A SOLVER FOR THE  AC-OPTIMAL POWER FLOW

内容:论文提出一种把去噪扩散模型改造成“序列生成器”的新训练目标。在每一时间步只扩散该步的未来 token(或潜码),并让网络学会单步去噪即可恢复整段序列。实验表明,DF 在语言建模、离散/连续控制、视频预测等任务上用 1/10~1/100 的推理步数就能达到或超过自回归与标准扩散模型的性能,首次实现“一步级并行采样 + 任意长度自回归扩展”的统一框架。

Physics-Informed Neural Network  for Multirotor Slung Load Systems Modeling

内容:论文提出测试时训练(TTT)层,一种可在推理阶段通过自监督任务实时更新自身权重的隐藏层,把训练直接搬进前向传播,以输入token序列为自监督信号用梯度下降在线优化内部模型,使每个序列都能即时定制层参数从而动态适应新领域或长上下文,实验表明仅替换Transformer中的前馈层为TTT层就能在同等算力下把8k上下文窗口有效扩展到1M token,语言建模困惑度显著下降,首次实现无需额外微调即可在测试时持续学习的大语言模型架构。

Bayesian Physics-Informed Extreme Learning Machine for Forward  and Inverse PDE Problems with Noisy Data

内容:该论文提出“零阶优化器”框架,仅用模型前向输出、无需反向传播即可在百万级参数的大模型上完成微调或攻击,通过并行化随机梯度估计把显存开销压至常数级,在同等精度下比一阶方法节省约10×内存,首次让单卡GPU就能调通7B参数模型,为资源受限场景下的私有/黑盒大模型高效适配与对抗评估提供了可扩展方案。

扫描下方二维码,回复「物理神经」

免费获取全部论文合集及项目代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值