不愧是PINN!Nature和Science双发!AI赋能流体力学,数值模拟更精准!

PINN(物理信息神经网络)真的杀疯了!

不仅连续登上《Nature Machine Intelligence》和《Science》,在今年还小蹭了一把诺贝尔物理学奖的热度~诺贝尔物理学奖的两位获奖者所作出的贡献就在于利用物理学训练人工神经网络,一种融合物理学与神经网络的创新思路!

PINN的优势在于它能够将神经网络的拟合能力与物理知识的约束相结合,从而提高了模型的泛化能力、预测准确性以及数据利用效率,特别是在数据较少或噪声较大的情况下表现尤为突出。

目前,PINN的研究热度持续不减,在处理复杂物理问题上的灵活性和泛化能力无可替代,是学术界长热不衰的发文香饽饽。

我整理了10篇最新的【物理信息神经网络PINN】论文。还把发布在《Science》和《Nature》子刊的论文为大家扒出来了!需要的同学添加工中号【真AI至上】 回复 PINNs 即可全部领取。

Hidden Fluid Mechanics: Learning Velocity and Pressure Fields from Flow Visualizations

文章解析:

本文提出了一种基于深度学习的方法,通过流体可视化数据来学习流体的速度和压力场。

该方法结合了物理定律和神经网络模型,能够在不依赖边界条件的情况下准确预测流体动力学行为,为流体力学的数值模拟提供了新的途径。

创新点:

1.提出了一种物理信息深度学习框架,能够从流体可视化数据中直接学习速度和压力场。

2.通过神经网络模型结合物理定律,减少了对边界条件的依赖,提高了模型的鲁棒性和泛化能力。

3.在多个基准问题上验证了该方法的有效性,展示了其在复杂流体动力学问题中的应用潜力。

研究方法:

1.基于传输方程和Navier-Stokes方程,构建了一个非量纲化的数学模型。

2.使用物理信息深度学习方法,将物理定律嵌入神经网络模型中,以学习流体的动力学行为。

3.通过选择具有足够浓度梯度的训练边界区域,减少对速度和压力边界条件的显式施加需求。

研究结论:

1.该方法能够在不依赖边界条件的情况下,准确预测流体的速度和压力场。

2.在多个基准问题上的测试表明,该方法具有较高的准确性和鲁棒性。

3.该方法为流体力学的数值模拟提供了一种新的、高效且可靠的技术手段。

需要的同学添加工中号【真AI至上】 回复 PINNs 即可全部领取。

SINCKOLMOGOROV -ARNOLD NETWORK AND ITS APPLICATIONS ON PHYSICS -INFORMED NEURAL 

NETWORKS

文章解析:

本文提出了一种新的神经网络架构——SincKolmogorov-Arnold网络(SincKAN),该网络利用Sinc插值方法替代传统的三次样条插值,以更好地处理具有奇点的函数。

通过一系列实验验证了SincKAN在网络性能和解决偏微分方程方面的优越性。

创新点:

1.提出了SincKolmogorov-Arnold网络(SincKAN),一种能够有效处理奇点的新网络架构。

2.利用Sinc插值方法替代传统的三次样条插值,提高了网络处理奇点问题的能力。

3.通过实验验证了SincKAN在网络性能和解决物理信息偏微分方程方面的优势。

研究方法:

1.介绍了物理信息神经网络(PINNs)的基本原理和应用场景。

2.详细解释了Sinc插值方法及其在SincKAN中的应用。

3.通过多个基准测试,包括平滑函数、不连续函数和边界层问题,比较了SincKAN与MLP、KAN等网络的性能。

研究结论:

1.SincKAN在处理具有奇点的函数时表现出色,能够有效缓解物理信息神经网络中的谱偏置问题。

2.SincKAN在解决偏微分方程方面优于传统的PINNs,特别是在处理复杂物理问题时。

3.未来的研究方向包括进一步优化SincKAN的性能和扩展其应用范围。

需要的同学添加工中号【真AI至上】 回复 PINNs 即可全部领取。

### 物理信息神经网络(PINN)基于PyTorch的实现 物理信息神经网络(PINN),即Physics-Informed Neural Networks,是一种结合了物理学原理与深度学习技术的方法,在处理涉及偏微分方程(PDEs)的问题上表现尤为突出[^2]。对于希望利用Python库PyTorch来构建训练PINNs的研究人员来说,存在多种资源可以提供帮助。 #### 使用PyTorch实现PINN的关键要素 1. **定义损失函数** 损失函数的设计至关重要,因为它不仅要考虑数据拟合误差,还要加入来自物理定律的信息作为正则化项。具体而言,可以通过自动微分计算PDE残差并将其纳入总损失之中[^4]。 2. **初始化模型结构** 构建一个多层感知器(MLP),其中输入维度对应于时间空间坐标,而输出则是待预测的状态变量。每一层之间的激活函数通常选用tanh()以确保良好的梯度传播特性。 3. **设置边界/初始条件** 将已知的边界或初值条件编码成额外的惩罚项添加至最终目标函数里,从而引导解朝着符合实际物理场景的方向收敛[^3]。 下面给出一段简单的代码片段展示如何用PyTorch搭建一个基本版的PINN: ```python import torch from torch import nn, optim class PINN(nn.Module): def __init__(self): super().__init__() self.fc = nn.Sequential( nn.Linear(2, 50), # 输入为时间t 位置x nn.Tanh(), *([nn.Linear(50, 50), nn.Tanh()] * 7), nn.Linear(50, 1)) # 输出u(t,x) def forward(self, t_x): u_pred = self.fc(t_x) return u_pred.flatten() def compute_loss(model, x_data, y_true=None): """ 计算总的loss """ # 预测结果 pred = model(x_data) # 如果有真实标签,则加上MSE Loss mse_loss = ((pred - y_true)**2).mean() if y_true is not None else 0 # 自动求导得到du/dt d²u/dx²... du_dt = torch.autograd.grad(pred.sum(), x_data[:, :1], create_graph=True)[0] du_dx = torch.autograd.grad(pred.sum(), x_data[:, 1:], create_graph=True)[0] laplacian_u = torch.autograd.grad(du_dx.sum(), x_data[:, 1:], retain_graph=True)[0] # PDE Residual: 这里的例子假设是一个热传导方程 residual = du_dt - alpha*laplacian_u pde_loss = (residual**2).mean() total_loss = mse_loss + lambda_ * pde_loss return total_loss if __name__ == '__main__': device = 'cuda' if torch.cuda.is_available() else 'cpu' net = PINN().to(device) optimizer = optim.Adam(net.parameters()) epochs = 10000 for epoch in range(epochs): loss = compute_loss(net, ...) optimizer.zero_grad() loss.backward() optimizer.step() ``` 此段代码展示了创建一个简单的一维热传导问题下的PINN框架,并通过自定义`compute_loss()`函数实现了对PDE约束的支持。需要注意的是这只是一个非常基础的例子,实际应用中可能还需要针对特定应用场景调整架构设计以及优化策略等细节部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值