论randperm函数的原理

论randperm函数的原理
2007-12-25 18:05

 

关于随机数的产生,matlab提供了rand(n, m)这样的函数,其实用C++实现也是比较简单的。这里谈一下产生1~n个不重复的随机数,它到底是如何产生的?

搜一下matlab的关于randperm函数文件,果然搜到randperm.m
其解释如下:

function p = randperm(n);
%RANDPERM Random permutation.
%   RANDPERM(n) is a random permutation of the integers from 1 to n.
%   For example, RANDPERM(6) might be [2 4 5 6 1 3]
.
%  
%   Note that RANDPERM calls RAND and therefore changes RAND's state.
%
%   See also PERMUTE.

%   Copyright 1984-2002 The MathWorks, Inc.
%   $Revision: 5.10 $ $Date: 2002/04/09 00:26:14 $

[ignore,p] = sort(rand(1,n));

看到上面的解释,原来randperm又是基于rand和sort之上:即先随机产生n个数,当然这n个数可以相同,也可以相同,但并不影响排序,因为无论相等还是不相等还是可以排名的。

为了验证这个想法,当场实验一下:
>> y=rand(1, 6)

y =

    0.4103    0.8936    0.0579    0.3529    0.8132    0.0099

>> [ignore,p] = sort(y)

ignore =

    0.0099    0.0579    0.3529    0.4103    0.8132    0.8936


p =

     6     3     4     1     5     2

果然,我们看到0.009是最小,所以排序后,将它的下标,也就是它是第几个产生的(它是第6个产生的随机数,所以将它的下标6标进了第一个整型的随机数。

其次是0.0579它在原随机序列中是第3个产生的,所以排序后,将3放入第2个显示的位置。依次推,分别得到剩下的数字顺序。

果然是刁!

原来产生无重复随机数的原理是这样的:任何随机数,其产生的顺序必然是一整数序列:
即从1, 2, 3, ..., n产生了n个数,你且别管这n个数是不是重复的,反正是产生了n个数,这n个数都有自己对应的一个下标,这个下标就是它是第几个产生的。即一个随机数有两个特征:

1. 它的大小。
2. 它的下标,即它是第几个产生的。

无论有多少个重复的数,其总有一个排序结果,这个排序的结果所对应的数的下标即随机产生的数列。

当然在排序的过程中其下标要跟着置换变化。

参考资源链接:[RSA算法Matlab实现:公开密钥加密与大素数生成](https://wenku.csdn.net/doc/5mdas5zozg?utm_source=wenku_answer2doc_content) 在MATLAB中实现RSA算法,首先需要掌握如何生成大素数以及执行大指数模幂运算,这两个步骤是RSA加密和解密过程的基础。《RSA算法Matlab实现:公开密钥加密与大素数生成》这篇论文,为你提供了详细的实现方法和步骤,能够帮助你深入理解并实践RSA算法。 生成大素数是RSA算法的一个关键环节,它需要选择两个足够大的随机素数p和q,然后计算它们的乘积n=p*q,这个乘积n和欧拉函数φ(n)=(p-1)*(q-1)共同构成了公钥和私钥。在MATLAB中,可以使用内置函数,例如'randperm'和'isprime'来生成大素数。例如,生成一个大小为N位的大素数的代码片段可能如下: ```matlab N = 1024; % 指定素数的位数 p = randperm(2^N, 1); q = randperm(2^N, 1); while ~isprime(p) || ~isprime(q) % 确保生成的数是素数 p = randperm(2^N, 1); q = randperm(2^N, 1); end n = p*q; % 计算n ``` 接下来,模幂运算的实现是RSA加密过程的关键。RSA算法中的加密函数e(n) = C^e mod n,其中C是密文,e是公钥指数。在MATLAB中,可以使用'powermod'函数来高效地计算模幂运算。例如,加密消息M的代码片段可能如下: ```matlab e = ...; % 公钥指数,通常选择较小的数如3或者65537 M = ...; % 明文消息 C = powermod(M, e, n); % 加密消息 ``` 在MATLAB中实现RSA算法,你还可以利用其强大的数值计算能力进行优化,例如使用并行计算或多线程技术来加速模幂运算。 综上所述,通过《RSA算法Matlab实现:公开密钥加密与大素数生成》提供的方法和示例代码,你可以在MATLAB中实现RSA算法的关键步骤。这不仅有助于你理解RSA算法的原理,还能提高你在实际环境中应用该算法的能力。 参考资源链接:[RSA算法Matlab实现:公开密钥加密与大素数生成](https://wenku.csdn.net/doc/5mdas5zozg?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值