深度学习入门(5) - RNN

Recurrent Neural Network

Process Sequences!

Sequential processing of non-sequential data

h t = f W ( h t − 1 , x t ) h_t = f_W(h_{t-1},x_t) ht=fW(ht1,xt)

new state is calculated by f on old state and input x t x_t xt

y t = f W y ( h t ) y_t = f_{W_y}(h_t) yt=fWy(ht)

and output is a applying another function f on h_t

same function and the same set of parms are used at every time step

Vanilla RNN

请添加图片描述

Truncated Backpropagation Trough Time

Backpropagation through time takes too much memory for long sequences

Instead, do the backpropagtion in truncated chunks.

Make it feasible to train

LSTM (Long Short Term Memory)

请添加图片描述

一个LSTM很详细的讲解!

https://blog.csdn.net/qian99/article/details/88628383

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值