由极大似然估计推导损失函数——线性回归

一般的线性回归是由 ( x 1 , x 2 , . . . , x n ) (x_1,x_2,...,x_n) (x1,x2,...,xn)预测 y y y,损失函数采用均方差函数
M S E = 1 m ∑ i = 1 n ∥ y ^ 2 − y 2 ∥ 2 MSE=\frac{1}{m}\sum_{i=1}^{n}\left\|\hat{y} ^2-y^2\right\|^2 MSE=m1i=1ny^2y22

利用极大似然估计进行推导

想象输入同样的X,预测值 y ^ 2 \hat{y} ^2 y^2有很多个。输入同样的X,普通线性回归的预测值只有一个,这里假设预测值服从某个分布。这里采用 p ( y ∣ X ) p(y|X) p(yX)表示 y y y出现的概率。
线性回归函数为
y = θ T x + ϵ y=\theta^Tx+\epsilon y=θTx+ϵ
假设 p ( y ∣ X ) p(y|X) p(yX)服从正态分布,即
p ( y ∣ X ) = N ( y ; 0 , σ 2 ) p(y|X)=N(y;0,\sigma^2) p(yX)=N(y;0,σ2)
也即
ϵ ∼ N ( y ; 0 , σ 2 ) \epsilon\sim{N(y;0,\sigma^2)} ϵN(y;0,σ2)
似然函数为
L ( θ ) = ∏ i = 1 m p ( ϵ ) = ∏ i = 1 m 1 2 π σ e − ϵ 2 2 σ 2 L(\theta)=\prod_{i=1}^{m}p(\epsilon) =\prod_{i=1}^{m}\frac{1}{\sqrt {2\pi}\sigma}e^{-\frac{\epsilon^2}{2\sigma^2}} L(θ)=i=1mp(ϵ)=i=1m2π σ1e2σ2ϵ2
= ( 1 2 π σ ) m e − ∑ i = 1 m ϵ 2 2 σ 2 =(\frac{1}{\sqrt{2\pi}\sigma})^{m}e^{-\sum{_{i=1}^{m}\frac{\epsilon^2}{2\sigma^2}}} =(2π σ1)mei=1m2σ2ϵ2
取对数可以得到
l n L ( θ ) = − m l n ( 2 π ) − m l n ( σ ) − ∑ i = 1 m ϵ 2 2 σ 2 lnL(\theta)=-mln(\sqrt{2\pi})-mln(\sigma)-\sum_{i=1}^{m}\frac{\epsilon^2}{2\sigma^2} lnL(θ)=mln(2π )mln(σ)i=1m2σ2ϵ2

= − m 2 l n ( 2 π ) − m l n ( σ ) − 1 2 σ 2 ∑ i = 1 m ( y − θ T X ) =-\frac{m}{2}ln(2\pi)-mln(\sigma)-\frac{1}{2\sigma^2}\sum_{i=1}^{m}(y-\theta^{T}X) =2mln(2π)mln(σ)2σ21i=1m(yθTX)
所以有
l o s s = min ⁡ θ − l n L ( θ ) = 1 2 ∑ i = 1 m ( y − θ T X ) loss=\min\limits_{\theta}{-lnL(\theta)}\\ =\frac{1}{2}\sum_{i=1}^{m}(y-\theta^{T}X) loss=θminlnL(θ)=21i=1m(yθTX)
由上式可以看出,利用极大似然估计得出的对数似然函数与均方差相似,最大化对数似然与最小化均方差会得到相同的参数。

结论

线性回归:假定误差项 ϵ ∼ N ( y ; 0 , σ 2 ) \epsilon\sim{N(y;0,\sigma^2)} ϵN(y;0,σ2),或者预测项 y ∼ N ( y ; μ , σ 2 ) y\sim{N(y;\mu,\sigma^2)} yN(y;μ,σ2)
最小化负的对数似然等价于最小化均方误差。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值