大模型GPT-3.5,2022年11月发布。
可谓春风化雨,雨后春笋一般。
到现在2024年,国产大模型工信部注册的,已有几百家。
国产大模型崛起速度之快,令人惊叹。
在如此之多的大模型里面,如何选择好用的,还真是个问题。
结合GPT4o和Claude3.5,加上自身的一定使用,总结了如下12家国产大模型:
下面表格,排名不分先后
前排提示,文末有大模型AGI-CSDN独家资料包哦!
各自产品对应的logo如下:
文字版介绍:
1 百度:推出了“文心一言”大模型,具备强大的自然语言处理能力,广泛应用于搜索、对话等领域。
2 阿里巴巴:发布了“通义千问”大模型,支持多种语言理解和生成任务,应用于电商、云计算等场景。
3 腾讯:研发了“混元”大模型,强调多模态融合,应用于社交、游戏等领域。
4 华为:推出了“盘古”大模型,专注于自然语言处理和计算机视觉,应用于云服务和智能设备。
5 科大讯飞:发布了“星火认知”大模型,强调语音识别和自然语言理解,广泛应用于教育和办公领域。
6 商汤科技:推出了“日日新”大模型,专注于计算机视觉和多模态融合,应用于安防和自动驾驶等领域。
7 智谱AI:研发了“GLM-4”大模型,具备强大的语言理解和生成能力,应用于科研和教育领域。
8 字节跳动:推出了“豆包”大模型,应用于内容创作和推荐系统。
9 360公司:发布了“360智脑”大模型,强调安全性和信息检索,应用于搜索和安全领域。
10 昆仑万维:天工AI,双千亿级大语言模型,国内首个AI搜索产品“天工AI搜索”。
11 快手:推出了“可灵AI”大模型,应用于短视频内容创作和推荐。
12 月之暗面科技:研发了“Kimi”大模型,专注于对话式服务和智能助手。
看到这里的老铁,可能会有问题,哪家最强呢?
就要看如何评价一个大模型的能力,有三个最重要的指标。
一般来说,衡量指标有三个:第一:文本生成能力;第二:任务推理能力;第三:通用和泛化能力。
文本生成能力:文本生成能力指模型在自然语言生成中的流畅性、语义相关性和多样性。常用评估方法包括困惑度(Perplexity)、BLEU和ROUGE等指标。
推理能力:推理能力反映模型在逻辑推导、知识应用和因果推理任务中的表现。强推理能力使模型能够理解上下文并完成复杂问题的解答。
泛化能力:泛化能力体现模型在未见过的数据或任务上的适应性。优秀的泛化能力意味着模型能跨领域、跨语言和多模态高效工作。
而数学推理能力又是重中之重,它体现了模型的智力水平,推理能力强,才能应对复杂任务。
而咱们平时的需求,主要也是以复杂任务为主,否则我们也不会使用它们,简单的任务,咱们自己就能做了;重复的任务,咱们写几行代码,就自动化了。
目前openAI的o1推理能力公认最好的,我询问了它,给出数学推理能力前三强:
但是它的知识目前只学习到了2023年10月,所以排名只能参考。
为了进一步客观,我又询问了数学推理能力很强的Claude3.5 ,它的回答如下:
总结来说,智谱GLM-4,文心一言,通义千问,KIMI,是o1和claude3.5给出的答案。
第一轮筛选过后,我再亲测上面上榜四个大模型。
测试方法,选择一个标准数学数据集,就拿GSM8K吧,先找一道典型题目,逐一询问它们。
选择下面这道:
为什么选择这道题目呢,因为GPT-4o这道题目都无法给出准确答案。
如下所示,给出答案8,这是错误的:
这就热闹了,看看国产大模型能否答对。
先提问智谱GLM-4,答案10,回答正确:
再提问文心一言,使用3.5,得到答案是8,回答错误。已开通会员的可以试试文心4回答是否正确:
再提问通义千问2.5,结果10,回答正确:
最后提问KIMI,结果8,回答错误:
经过第二轮一道题测试,发现回答正确的大模型,剩下两个,分别是GLM-4、通义千问。
最后一轮测试,选择一道2024年全国卷高考数学题,找一道我还会的选择题
我做了下,答案是B:
先提问GLM-4,回答B,结果正确:
再提问通义千问,回答A,结果错误:
顺便提问了下GPT-4o,它选了C,又错了:
经过三轮数学测试,就剩 GLM-4。
国产大模型的智力水平,目前已经有超越GPT-4o的趋势,让人惊艳!
期待国产大模型和厂家们再接再厉,不断突破。
备注:要想得出更加客观全面的智力水平,请参考基于不同整个数据集、不同推理水平测试维度的全面评价,本测试限于篇幅,只做初步测试。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓