【目标检测数据集处理】DOTA格式数据集增强「包含图像处理,旋转,缩放等」

本文介绍了在比赛数据预处理中使用的一种Dota数据集增强库,包含8种增强方法,如旋转、随机缩放和添加天气效果。还提到了辅助工具compare.py用于检查标签完整性和vision.py用于数据可视化。
摘要由CSDN通过智能技术生成

最近在做比赛数据预处理的时候,用到了很多数据增强方法,对应的是dota数据集。

数据增强

仓库地址:https://github.com/AO-XIN/dota-augmentation
数据增强包含了下面8种。
在这里插入图片描述
使用方法非常简单,将项目clone至本地。

git clone https://github.com/AO-XIN/dota-augmentation.git
pip install -r requirements.txt

使用方法打开main按照注释使用即可。

import aug

A=aug.aug("train/images","/Users/aoxin/CODE/python/dota-augmentation/train/lableTxt","aug-images","aug-lables")# 原始图片路径 原始lables路径 扩充到的图片路径 扩充到的lables路径
# A.Rotate(angle=90)

# A.RandomResize()
A.AddWeather()

其他工具

项目中还有一些其他小工具,比如compare.py和vision.py

  • vision.py是对dota数据集进行可视化将框标注在图片上。
  • compare.py是将对图片文件夹和标签文件夹进行检查,查看是否有标签及图片遗漏。
### 回答1: 将DOTA(Defense of the Ancients)数据集处理成YOLO(You Only Look Once)格式可以通过以下步骤完成: 1. 数据预处理:首先,需要对DOTA数据集进行预处理,包括将标注文件和图像文件分开保存。标注文件通常以.xml或.txt格式提供,其中包含了每个图像中目标的位置和类别信息。图像文件则以.jpg或.png格式保存。 2. 类别和标签映射:根据DOTA数据集的类别标签定义,创建一个类别到整数的映射表。例如,将“plane”映射为0,“ship”映射为1,“storage tank”映射为2等等。 3. 调整坐标:DOTA数据集使用四边形框标记目标的位置,而YOLO需要使用矩形框表示。因此,需要将四边形框转换为矩形框。可以使用几何转换算法,例如旋转矩形框的最小外接矩形或最小旋转矩形,将四边形框调整为矩形框。 4. 数据标注格式转换:使用上述的类别标签映射和调整后的矩形框位置,可以将DOTA数据集的标注格式转换为YOLO格式。YOLO格式通常是一个文本文件,每一行对应一张图像,以如下格式呈现:类别索引 x中心坐标 y中心坐标 宽度 高度。例如,对于一辆车在图像中的位置,可以表示为“0 0.5 0.6 0.3 0.2”,其中0是类别的索引,(0.5, 0.6)是矩形框的中心坐标,0.3和0.2分别是矩形框的宽度和高度。 5. 数据分割:将处理后的YOLO格式标注文件和对应的图像文件分别移动到训练、验证和测试数据集的相应文件夹中,以便YOLO模型可以正确加载和训练。 通过以上步骤,就可以将DOTA数据集处理成YOLO格式,便于后续使用YOLO算法进行目标检测处理后的数据集可以直接用于训练YOLO模型。 ### 回答2: 要将Dota数据集处理成YOLO格式,需要进行以下步骤: 1. 下载Dota数据集:首先,需要从官方网站或其他资源中下载Dota数据集。该数据集包含Dota游戏中的图像及其对应的边界框标注信息。 2. 数据预处理:对数据集中的图像进行预处理操作。包括调整图像大小、转换图像格式等。可以使用图像处理库(如OpenCV)来实现这些操作。 3. 边界框转换:将Dota数据集中的边界框标注转换为YOLO格式。YOLO格式中的边界框使用相对坐标和尺寸表示,同时需要标注每个边界框的类别。因此,需要将Dota数据集中的边界框标注信息转换为YOLO格式要求的标签格式。 4. 标签文件生成:将转换后的YOLO格式的标签与对应的图像文件进行关联,生成YOLO格式的标签文件。YOLO要求每个图像对应一个标签文件,该文件包含每个边界框的类别和位置信息。 5. 数据集划分:将处理后的数据集划分为训练集、验证集和测试集,可以按比例划分,通常是70%的数据用于训练,20%用于验证,10%用于测试。 6. 数据集路径配置:将数据集的路径配置到YOLO配置文件中,以便YOLO模型能够正确读取和处理数据集。 7. 训练模型:使用YOLO框架进行训练。通过配置YOLO框架的参数和超参数,选择适当的优化算法、学习率等进行训练。此步骤需要使用GPU进行模型训练,以加速计算量。 8. 模型评估和测试:使用训练好的YOLO模型,对测试集进行评估和测试。评估指标可以使用mAP、IoU等常用指标进行衡量。 以上是将Dota数据集处理成YOLO格式的主要步骤,通过这些步骤可以将Dota数据集转换为适用于YOLO模型的输入形式,从而进行目标检测任务。具体的实现过程可能需要根据数据集和工具的不同进行相应的调整。 ### 回答3: 要将DOTA数据集处理成YOLO格式,首先需要理解DOTA数据集的结构和YOLO的要求。 DOTA数据集是一个常用的对象检测数据集,包括大量的航拍图像和标注信息。每个图像的标注信息通常以文本文件(.txt)的形式提供,其中包含了检测目标的类别、边界框的位置和其他相关信息。 YOLO(You Only Look Once)是一种基于深度学习的目标检测算法,要求输入图像和对应的标注信息采用特定的格式处理DOTA数据集成YOLO格式的步骤如下: 1. 首先,进入DOTA数据集的文件夹,检查数据集的目录结构。一般来说,数据集包含图像文件夹和标注文件夹。 2. 在YOLO格式中,每个图像对应一个文本文件,而不是使用DOTA数据集中的单个文本文件。因此,需要遍历每张图像并处理它们。 3. 对于每张图像,读取对应的标注文件,解析文本内容。通常标注文件中的每一行表示一个目标,其中包括目标的类别、边界框的位置和其他相关信息。将这些信息提取出来。 4. 将目标的类别转换为YOLO格式要求的类别序号。可以根据目标的类别名称和YOLO中的类别列表进行匹配。 5. 将边界框的位置信息转换为YOLO格式要求的形式。YOLO格式要求的边界框位置是相对于图像尺寸的标准化坐标,通常用边界框的中心点坐标、宽度和高度来表示。 6. 将转换后的目标类别和边界框位置信息写入新的文本文件,作为该图像的标注文件。 7. 重复上述步骤,处理所有的图像。 处理完成后,DOTA数据集就可以转换成YOLO格式,可以用于训练YOLO模型。但需要注意的是,不同的YOLO版本对于标注信息的要求可能有所不同,需要根据具体的YOLO版本进行相应的调整和修改。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

麦滋堡的摸鱼芝士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值