YoloV3检测不同分辨率输入的网络大小「params、Flops」

直接使用YoloV3进行网络大小的检测有问题,不论设置使用输入图片分辨率,得到的params和Flops都是 640 × 640 640\times640 640×640输入的。
但是,在输入分辨率改变的情况下,网络的Flops一定改变,所以本文展现另一种测试Flops的方式。
使用项目:https://github.com/ultralytics/yolov3

这是ultralytics复现的pytorch的yoloV3.

在项目的models/yolo.pyv中。在这里插入图片描述
将最后几行替换成如下

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg', type=str, default='yolov3.yaml', help='model.yaml')
    parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--profile', action='store_true', help='profile model speed')
    parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
    parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
    opt = parser.parse_args()
    opt.cfg = check_yaml(opt.cfg)  # check YAML
    print_args(vars(opt))
    device = select_device(opt.device)

    # Create model
    im = torch.rand(opt.batch_size, 3, 320, 320).to(device)
    model = Model(opt.cfg).to(device)
    # Options
    # opt.line_profile=True
    opt.profile=True
    if opt.line_profile:  # profile layer by layer
        model(im, profile=True)

    elif opt.profile:  # profile forward-backward
        results = profile(input=im, ops=[model], n=3)

    elif opt.test:  # test all models
        for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
            try:
                _ = Model(cfg)
            except Exception as e:
                print(f'Error in {cfg}: {e}')

    else:  # report fused model summary
        model.fuse()

其中

im = torch.rand(opt.batch_size, 3, 320, 320).to(device)
    model = Model(opt.cfg).to(device)

就是用来修改输入分辨率的。
这样就可以测试到网络在不同分辨率输入下的真实大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

麦滋堡的摸鱼芝士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值