【目标检测数据集处理】DOTA数据集格式介绍

DOTA数据集是用于航空图像中物体检测的大规模数据集,包含多个版本及丰富的物体类别。每个目标用10个数值表示,包括矩形框坐标、类别和识别难度。文章还提及了数据增强和数据集调整在训练过程中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 DOTA数据集简介

DOTA数据集全称:Dataset for Object deTection in Aerial images
DOTA数据集v1.0共收录2806张4000 × 4000的图片,总共包含188282个目标。

  • DOTA数据集论文介绍:https://arxiv.org/pdf/1711.10398.pdf
  • 数据集官网:https://captain-whu.github.io/DOTA/dataset.html

在这里插入图片描述
DOTA数据集有三个版本:

  • DOTAV1.0
    类别数目:15
    类别名称:plane, ship, storage tank, baseball diamond, tennis court, basketball court, ground track field, harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer ball field , swimming pool
  • DOTAV1.5
    类别数目:16
    类别名称:plane, ship, storage tank, baseball diamond, tennis court, basketball court, ground track field, harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer ball field, swimming pool , container crane
  • DOTAV2.0
    类别数目:18
    类别名称:plane, ship, storage tank, baseball diamond, tennis court, basketball court, ground track field, harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer ball field, swimming pool, container crane, airport , helipad

2 标签

在对数据集进行数据增强时,我们需要知道相关标签文件格式
每个对象有10个数值,前8个代表一个矩形框四个角的坐标,第9个表示对象类别,第10个表示识别难易程度,0表示简单,1表示困难。
下面是一个类似的文件

950.0 851.0 931.0 852.0 932.0 817.0 952.0 817.0 small-vehicle 1
475.0 982.0 456.0 982.0 461.0 841.0 481.0 842.0 large-vehicle 0
424.0 978.0 400.0 982.0 403.0 840.0 426.0 839.0 large-vehicle 0
395.0 984.0 373.0 985.0 376.0 842.0 399.0 843.0 large-vehicle 0
365.0 979.0 344.0 978.0 346.0 839.0 369.0 838.0 large-vehicle 0
337.0 977.0 317.0 977.0 321.0 836.0 339.0 835.0 large-vehicle 0
310.0 978.0 287.0 979.0 286.0 838.0 311.0 838.0 large-vehicle 0
154.0 947.0 250.0 947.0 250.0 971.0 154.0 971.0 large-vehicle 0
140.0 894.0 255.0 894.0 255.0 919.0 140.0 919.0 large-vehicle 0
116.0 862.0 236.0 862.0 236.0 888.0 116.0 888.0 large-vehicle 0
146.0 771.0 269.0 771.0 269.0 796.0 146.0 796.0 large-vehicle 0
136.0 741.0 271.0 741.0 271.0 766.0 136.0 766.0 large-vehicle 0
136.0 713.0 271.0 713.0 271.0 735.0 136.0 735.0 large-vehicle 0

可以看出其标签是由四点组成的旋转框。

3 数据增强和数据集调整

相关数据增强和数据集调整我放在本专栏的其他文章中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

麦滋堡的摸鱼芝士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值