18 MATLAB六自由度机械臂关节空间轨迹规划算法:3次、5次多项式插值法及353多项式应用与曲线绘制

Matlab 六自由度机械臂关节空间轨迹规划:从多项式插值到末端轨迹绘制

在机械臂控制领域,轨迹规划是至关重要的一环,它决定了机械臂如何从起始点平稳、高效地移动到目标点。今天咱们就来深入探讨一下基于Matlab的六自由度机械臂关节空间轨迹规划,重点看看3次多项式、5次多项式插值法以及353多项式在其中的应用,并且会绘制关节角度、速度、加速度随时间变化的曲线,还会带入自己的机械臂模型绘制末端轨迹图。

3次多项式插值法

三次多项式通常可以用来描述机械臂在起始点和终点之间的平滑过渡。它的一般形式为:

```matlab % 假设起始点q0,终点qf,起始时间t0,结束时间tf q0 = [0; 0; 0; 0; 0; 0]; % 起始关节角度 qf = [pi/2; pi/4; pi/6; pi/3; pi/8; pi/10]; % 目标关节角度 t0 = 0; tf = 5; % 运动总时间

% 三次多项式系数计算 a0 = q0; a1 = 0; a2 = 3(qf - q0)/(tf^2); a3 = -2(qf - q0)/(tf^3);

% 时间向量 t = linspace(t0, tf, 100); % 100个时间点来离散化运动过程

% 计算关节角度 q = a0 + a1.t + a2.t.^2 + a3.*t.^3;

% 绘制关节角度曲线 figure; for i = 1:6 subplot(6,1,i); plot(t, q(i,:)); title(['Joint ', num2str(i), ' Angle']); xlabel('Time (s)'); ylabel('Angle (rad)'); end ```

这段代码中,我们首先定义了起始点 q0 和终点 qf 的关节角度,以及运动的起始时间 t0 和结束时间 tf 。然后根据三次多项式的特性计算出系数 a0a1a2a3 。通过 linspace 函数创建了一系列时间点,在这些时间点上计算关节角度 q 。最后使用 subplot 函数在同一个图中绘制出六个关节的角度随时间变化的曲线。

为了得到关节速度和加速度,我们对多项式求导。速度的多项式为:

```matlab % 计算关节速度 qd = a1 + 2a2.t + 3a3.t.^2;

% 绘制关节速度曲线 figure; for i = 1:6 subplot(6,1,i); plot(t, qd(i,:)); title(['Joint ', num2str(i), ' Velocity']); xlabel('Time (s)'); ylabel('Velocity (rad/s)'); end ```

加速度的多项式为:

```matlab % 计算关节加速度 qdd = 2a2 + 6a3.*t;

% 绘制关节加速度曲线 figure; for i = 1:6 subplot(6,1,i); plot(t, qdd(i,:)); title(['Joint ', num2str(i), ' Acceleration']); xlabel('Time (s)'); ylabel('Acceleration (rad/s^2)'); end ```

5次多项式插值法

五次多项式相比三次多项式能够提供更平滑的运动,特别是在起始和结束点,加速度可以平滑地过渡到零。五次多项式的一般形式为:

```matlab % 假设起始点q0,终点qf,起始时间t0,结束时间tf q0 = [0; 0; 0; 0; 0; 0]; % 起始关节角度 qf = [pi/2; pi/4; pi/6; pi/3; pi/8; pi/10]; % 目标关节角度 t0 = 0; tf = 5; % 运动总时间

% 五次多项式系数计算 a0 = q0; a1 = 0; a2 = 0; a3 = 10(qf - q0)/(tf^3); a4 = -15(qf - q0)/(tf^4); a5 = 6*(qf - q0)/(tf^5);

% 时间向量 t = linspace(t0, tf, 100); % 100个时间点来离散化运动过程

% 计算关节角度 q = a0 + a1.t + a2.t.^2 + a3.t.^3 + a4.t.^4 + a5.*t.^5;

% 绘制关节角度曲线 figure; for i = 1:6 subplot(6,1,i); plot(t, q(i,:)); title(['Joint ', num2str(i), ' Angle']); xlabel('Time (s)'); ylabel('Angle (rad)'); end ```

同样,对五次多项式求导可以得到关节速度和加速度:

```matlab % 计算关节速度 qd = a1 + 2a2.t + 3a3.t.^2 + 4a4.t.^3 + 5a5.t.^4;

% 绘制关节速度曲线 figure; for i = 1:6 subplot(6,1,i); plot(t, qd(i,:)); title(['Joint ', num2str(i), ' Velocity']); xlabel('Time (s)'); ylabel('Velocity (rad/s)'); end ```

```matlab % 计算关节加速度 qdd = 2a2 + 6a3.t + 12a4.t.^2 + 20a5.*t.^3;

% 绘制关节加速度曲线 figure; for i = 1:6 subplot(6,1,i); plot(t, qdd(i,:)); title(['Joint ', num2str(i), ' Acceleration']); xlabel('Time (s)'); ylabel('Acceleration (rad/s^2)'); end ```

353多项式

353多项式结合了三次和五次多项式的优点,在起始和结束阶段使用五次多项式,中间阶段使用三次多项式,以达到更好的平滑性和效率。

```matlab % 假设起始点q0,终点qf,起始时间t0,结束时间tf q0 = [0; 0; 0; 0; 0; 0]; % 起始关节角度 qf = [pi/2; pi/4; pi/6; pi/3; pi/8; pi/10]; % 目标关节角度 t0 = 0; tf = 5; % 运动总时间

% 划分时间区间 t1 = tf/4; % 第一段五次多项式结束时间 t2 = 3*tf/4; % 第二段五次多项式开始时间

% 第一段五次多项式系数计算 a0_1 = q0; a1_1 = 0; a2_1 = 0; a3_1 = 10(qf - q0)/(t1^3); a4_1 = -15(qf - q0)/(t1^4); a5_1 = 6*(qf - q0)/(t1^5);

% 中间三次多项式系数计算 q1 = a0_1 + a1_1t1 + a2_1t1^2 + a3_1t1^3 + a4_1t1^4 + a5_1t1^5; qd1 = a1_1 + 2a2_1t1 + 3a3_1t1^2 + 4a4_1t1^3 + 5a5_1*t1^4;

a0_2 = q1; a1_2 = qd1; a2_2 = 3(qf - q1)/((t2 - t1)^2); a3_2 = -2(qf - q1)/((t2 - t1)^3);

% 第二段五次多项式系数计算 a0_3 = qf; a1_3 = 0; a2_3 = 0; a3_3 = -10(qf - q1)/((tf - t2)^3); a4_3 = 15(qf - q1)/((tf - t2)^4); a5_3 = -6*(qf - q1)/((tf - t2)^5);

% 时间向量 t = linspace(t0, tf, 100); % 100个时间点来离散化运动过程

% 计算关节角度 q = zeros(6, length(t)); for k = 1:length(t) if t(k) <= t1 q(:,k) = a0_1 + a1_1t(k) + a2_1t(k)^2 + a3_1t(k)^3 + a4_1t(k)^4 + a5_1t(k)^5; elseif t(k) <= t2 q(:,k) = a0_2 + a1_2(t(k)-t1) + a2_2(t(k)-t1)^2 + a3_2(t(k)-t1)^3; else q(:,k) = a0_3 + a1_3(t(k)-t2) + a2_3(t(k)-t2)^2 + a3_3(t(k)-t2)^3 + a4_3(t(k)-t2)^4 + a5_3*(t(k)-t2)^5; end end

% 绘制关节角度曲线 figure; for i = 1:6 subplot(6,1,i); plot(t, q(i,:)); title(['Joint ', num2str(i), ' Angle']); xlabel('Time (s)'); ylabel('Angle (rad)'); end ```

对于关节速度和加速度的计算,同样是对上述不同区间的多项式求导,这里就不再赘述,大家可以按照之前的思路自行推导和编写代码。

绘制末端轨迹图

要绘制机械臂的末端轨迹图,我们需要知道机械臂的运动学模型。假设我们已经有了正运动学函数 fkine,它可以根据关节角度计算出末端位置。

```matlab % 假设已经定义了正运动学函数fkine % 计算每个时间点的末端位置 end_effector_pos = zeros(3, length(t)); for k = 1:length(t) end_effector_pos(:,k) = fkine(q(:,k)); end

% 绘制末端轨迹图 figure; plot3(end_effector_pos(1,:), end_effector_pos(2,:), end_effector_pos(3,:)); xlabel('X (m)'); ylabel('Y (m)'); zlabel('Z (m)'); title('End - effector Trajectory'); ```

在实际应用中,fkine 函数需要根据你的具体机械臂模型来编写,可能涉及到DH参数、齐次变换矩阵等知识。

通过上述的各种多项式插值法,我们可以有效地规划六自由度机械臂在关节空间的运动轨迹,并且通过Matlab强大的绘图功能直观地展示出关节角度、速度、加速度的变化以及末端轨迹,这对于优化机械臂的运动控制具有重要意义。希望大家在实际项目中能够灵活运用这些方法,打造出更加高效、精准的机械臂控制系统。

机械臂轨迹规划这玩意儿挺有意思的,就像给钢铁手臂编排舞蹈动作。今天咱们拿MATLAB整点实用的,用三种多项式插值搞关节空间轨迹规划。别被名词吓到,其实就是让机械臂各关节从A点到B点能平滑过渡。

先整三次多项式,这货刚好满足位置和速度连续。举个栗子,假设1号关节要从30度转到90度,总时间2秒:

```matlab syms t a = sym('a',[4 1]); theta = a(1) + a(2)t + a(3)t^2 + a(4)*t^3;

% 初始和终止条件 eq1 = subs(theta,t,0) == 30pi/180; % 起始位置 eq2 = subs(theta,t,2) == 90pi/180; % 终止位置 eq3 = subs(diff(theta,t),t,0) == 0; % 起始速度 eq4 = subs(diff(theta,t),t,2) == 0; % 终止速度

coeff = solve([eq1,eq2,eq3,eq4],a); % 解系数 ```

这段代码用符号计算解四次方程组,得到四次项系数。运行后把系数代入就能生成连续轨迹。不过三次多项式加速度不连续,可能让机械臂抽风,这时候得上五次多项式。

五次多项式多了加速度约束,适合强迫症患者。代码结构类似,但系数增加到6个:

```matlab theta_5 = sum(a.*t.^(0:5)'); % 五次多项式表达式

% 增加加速度约束 eq5 = subs(diff(theta_5,t,2),t,0) == 0; eq6 = subs(diff(theta_6,t,2),t,2) == 0;

% 解六元方程组... ```

实际应用中更骚的操作是3-5-3混合插值。前0.5秒用三次多项式加速,中间1秒用五次保持平滑,最后0.5秒再用三次减速。这种组合拳能兼顾效率和稳定性。

把算法套到六自由度机械臂上时,记得每个关节单独做插值。展示成果的代码可以这样写:

matlab % 假设q_traj是6xn的关节角度矩阵 t = linspace(0,2,100); figure subplot(3,1,1) plot(t,q_traj) % 角度曲线 subplot(3,1,2) plot(t,gradient(q_traj)./gradient(t)) % 数值微分求速度 subplot(3,1,3) plot(t,gradient(gradient(q_traj))./gradient(t).^2) % 加速度

想看末端执行器轨迹?用Robotics Toolbox的fkine正解:

matlab myrobot = importrobot('六轴机械臂模型'); % 替换自己的URDF traj = zeros(100,3); for i = 1:100 T = getTransform(myrobot,q_traj(:,i),'endeffector'); traj(i,:) = T(1:3,4)'; end figure plot3(traj(:,1),traj(:,2),traj(:,3),'LineWidth',2) animate(myrobot,q_traj','FrameRate',30)

注意检查D-H参数是否正确,不然动画可能会变成机械臂癫痫发作。遇到轨迹突变先别慌,八成是雅可比矩阵奇异性问题,换个中间点绕开就行。

### 使用PSO算法优化卷积神经网络(CNN)的方法 #### PSO与CNN结合的方式 粒子群优化(PSO)作为一种高效的全局优化算法,能够有效提升卷积神经网络(CNN)的性能。具体来说,在故障诊断模型中,PSO被用来优化CNN和BiLSTM网络的参数,从而提高了模型的学习效率和诊断精度[^1]。 为了实现这一点,通常会将PSO应用于以下几个方面: - **初始化权重**:使用PSO来寻找更优的初始权重设置,而不是随机初始化。这有助于加速训练过程并改善最终收敛的质量。 - **超参数调优**:除了调整内部连接权值外,还可以利用PSO对诸如学习率、正则化系数等影响较大的超参数进行自动化的搜索空间探索。 - **结构设计**:某些情况下甚至可以通过编码不同的层配置(比如滤波器数量),让PSO参与到最佳架构的选择当中去。 下面给出一段简单的Python伪代码展示如何基于`pyswarms`库实施上述策略之一——即通过PSO优化CNN中的全连接层权重矩阵W: ```python import numpy as np from pyswarms.single.global_best import GlobalBestPSO from keras.models import Sequential from keras.layers import Dense, Conv2D, Flatten def cnn_model(weights): model = Sequential() # 假设已经定义好了前面几层... fc_layer_size = weights.shape[-1] dense_weights = weights.reshape(-1, fc_layer_size) model.add(Flatten()) model.add(Dense(fc_layer_size, activation='relu', input_shape=(None,), use_bias=False)) # 设置预估得到的最佳权重给最后一层 model.get_layer(index=-1).set_weights([dense_weights]) return model # 定义适应度函数计算损失值 def fitness_function(positions): scores = [] for pos in positions: temp_model = cnn_model(pos) # 训练一轮获取当前loss history = temp_model.fit(x_train, y_train, epochs=1, verbose=0) score = -history.history['loss'][0] scores.append(score) return np.array(scores) options = {'c1': 0.5, 'c2': 0.3, 'w': 0.9} optimizer = GlobalBestPSO(n_particles=10, dimensions=fc_layer_neurons * previous_layer_output_dim, options=options) best_cost, best_pos = optimizer.optimize(fitness_function, iters=100) optimized_cnn = cnn_model(best_pos) ``` 这段代码展示了怎样构建一个基本框架,其中包含了创建简单版的CNN以及定义适合于PSO使用的适应度评估逻辑。需要注意的是这里仅针对单个特定部分进行了简化处理;实际项目里可能还需要考虑更多细节因素如多GPU支持下的分布式运算等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值