考研数二要掌握的高中知识点(四)


一、正切函数的图像性质


标准正切函数 tan ⁡ x \tan x tanx 的图像:

正切函数图像

做题画图时,正切函数不需要使用五点法画图,只需要取三个点就好: − π 2 、 0 、 π 2 -\frac {\pi}{2}、0、\frac {\pi}{2} 2π02π 即可,当碰见复杂的正切函数时,其解题思路和正余弦函数是完全相通的

定义域和值域

标准正切函数 tan ⁡ x \tan x tanx 的定义域为:{ x ∣ x ≠ k π + π 2 , k ∈ Z x|x \neq k\pi + \frac {\pi}{2}, k \in Z xx=+2π,kZ},值域: ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)

周期性

标准正切函数 tan ⁡ x \tan x tanx 的周期为 π \pi π

复杂正切函数 A tan ⁡ ( ω x + φ ) A\tan(\omega x + \varphi) Atan(ωx+φ) 的周期公式为: T = π ω T=\frac {\pi}{\omega} T=ωπ

奇偶性

标准正切函数 tan ⁡ x \tan x tanx 基于原点对称,所以为奇函数

复杂正切函数 A tan ⁡ ( ω x + φ ) A\tan(\omega x + \varphi) Atan(ωx+φ) 时,只要 φ \varphi φ π 2 \frac {\pi}{2} 2π 的整数倍,那么这个正切函数就都是奇函数( φ \varphi φ π 2 \frac {\pi}{2} 2π 的奇数倍时,会发生奇变,变为 1 tan ⁡ α \frac {1}{\tan \alpha} tanα1,但这也仅仅是变为倒数,并不会影响其奇偶性),当 φ \varphi φ 不是 π 2 \frac {\pi}{2} 2π 的整数倍时,那这个函数就是非奇非偶函数

对称性

正切函数的没有对称轴,但是有对称中心,标准的正切函数 tan ⁡ x \tan x tanx 的对称中心为: ( k π 2 , 0 ) , k ∈ Z (\frac {k\pi}{2}, 0), k \in Z (2,0),kZ

单调性

标准正切函数 tan ⁡ x \tan x tanx ( − π 2 + k π , π 2 + k π ) (-\frac {\pi}{2} + k\pi, \frac {\pi}{2} + k\pi) (2π+,2π+) 内单调递增

二、三角函数恒等变换公式


1. 同角齐次式


cos ⁡ α \cos \alpha cosα sin ⁡ α \sin \alpha sinα 的分式,变为关于 tan ⁡ \tan tan 的式子。要求分式的分子和分母中的每一项都必须是相同的次数,也就是必须齐次。然后分子分母同除相同次数的 cos ⁡ α \cos \alpha cosα

这个原理需要了解同角恒等式: tan ⁡ α = sin ⁡ α cos ⁡ α \tan \alpha = \frac {\sin \alpha}{\cos \alpha} tanα=cosαsinα sin ⁡ 2 α + cos ⁡ 2 α = 1 \sin^2 \alpha + \cos^2 \alpha = 1 sin2α+cos2α=1


适合使用同角齐次式的问题举例

1. 一次齐次分式

已知 tan ⁡ α = 2 \tan \alpha = 2 tanα=2,求 cos ⁡ α + sin ⁡ α sin ⁡ α + cos ⁡ α \frac {\cos \alpha + \sin \alpha}{\sin \alpha + \cos \alpha} sinα+cosαcosα+sinα

步骤1:分式是关于 cos ⁡ α \cos \alpha cosα sin ⁡ α \sin \alpha sinα 的,而已知的信息是 tan ⁡ α \tan \alpha tanα,可以考虑用齐次式将分式变为关于 tan ⁡ \tan tan 的分式

步骤2:分式的分子分母都是多项式,并且多项式的每一项都是一次项,是齐次的,所以可以使用齐次式

步骤3:按照同角齐次式的理论,分子分母需要同除相同次数的 cos ⁡ α \cos \alpha cosα,也就是一次式 cos ⁡ α \cos \alpha cosα

步骤4: ( cos ⁡ α + sin ⁡ α ) / cos ⁡ α ( sin ⁡ α − cos ⁡ α ) / cos ⁡ α = cos ⁡ α cos ⁡ α + sin ⁡ α cos ⁡ α sin ⁡ α cos ⁡ α − cos ⁡ α cos ⁡ α \frac {(\cos \alpha + \sin \alpha) / \cos \alpha}{(\sin \alpha - \cos \alpha) / \cos \alpha} = \frac {\frac {\cos \alpha}{\cos \alpha} + \frac {\sin \alpha}{\cos \alpha}}{\frac {\sin \alpha}{\cos \alpha} - \frac {\cos \alpha}{\cos \alpha}} (sinαcosα)/cosα(cosα+sinα)/cosα=cosαsinαcosαcosαcosαcosα+cosαsinα = 1 + tan ⁡ α tan ⁡ α − 1 \frac {1 + \tan \alpha}{\tan \alpha - 1} tanα11+tanα

步骤5:将 tan ⁡ α = 2 \tan \alpha = 2 tanα=2 代入, 1 + tan ⁡ α tan ⁡ α − 1 = 1 + 2 2 − 1 = 3 \frac {1 + \tan \alpha}{\tan \alpha - 1} = \frac {1 + 2}{2 - 1} = 3 tanα11+tanα=211+2=3

2. 二次齐次分式

已知 tan ⁡ α = 2 \tan \alpha = 2 tanα=2,求 3 sin ⁡ 2 α + 2 sin ⁡ α cos ⁡ α 4 cos ⁡ 2 α − sin ⁡ α cos ⁡ α \frac {3\sin^2\alpha + 2\sin\alpha\cos\alpha}{4\cos^2\alpha - \sin \alpha \cos \alpha} 4cos2αsinαcosα3sin2α+2sinαcosα

步骤1:分式是关于 cos ⁡ α \cos \alpha cosα sin ⁡ α \sin \alpha sinα 的,而已知的信息是 tan ⁡ α \tan \alpha tanα,可以考虑用齐次式将分式变为关于 tan ⁡ \tan tan 的分式

步骤2:这里需要注意,两个三角函数相乘,可视为二次项,所以题中分式的分子分母中多项式的每一项都是二次项,是齐次的,可以使用齐次式

步骤3:按照同角齐次式的理论,分子分母需要同除相同次数的 cos ⁡ α \cos \alpha cosα,也就是二次式 cos ⁡ 2 α \cos^2 \alpha cos2α

步骤4: ( 3 sin ⁡ 2 α + 2 sin ⁡ α cos ⁡ α ) / cos ⁡ 2 α ( 4 cos ⁡ 2 α − sin ⁡ α cos ⁡ α ) / cos ⁡ 2 α = 3 sin ⁡ 2 α cos ⁡ 2 α + 2 sin ⁡ α cos ⁡ α cos ⁡ 2 α 4 cos ⁡ 2 α cos ⁡ 2 α − sin ⁡ α cos ⁡ α cos ⁡ 2 α = 3 tan ⁡ 2 α + 2 tan ⁡ α 4 − tan ⁡ α \frac {(3\sin^2\alpha + 2\sin\alpha\cos\alpha) / \cos^2 \alpha}{(4\cos^2\alpha - \sin \alpha \cos \alpha) / \cos^2 \alpha} = \frac {\frac {3\sin^2\alpha}{\cos^2 \alpha} + \frac {2\sin\alpha\cos\alpha}{\cos^2 \alpha}}{\frac {4\cos^2\alpha }{\cos^2 \alpha} - \frac {\sin \alpha \cos \alpha}{\cos^2 \alpha}} = \frac {3\tan^2 \alpha + 2\tan\alpha}{4 - \tan\alpha} (4cos2αsinαcosα)/cos2α(3sin2α+2sinαcosα)/cos2α=cos2α4cos2αcos2αsinαcosαcos2α3sin2α+cos2α2sinαcosα=4tanα3tan2α+2tanα

步骤5:将 tan ⁡ α = 2 \tan \alpha = 2 tanα=2 代入, 3 tan ⁡ 2 α + 2 tan ⁡ α 4 − tan ⁡ α = 3 ∗ ( 2 ) 2 + 4 4 − 2 = 8 \frac {3\tan^2 \alpha + 2\tan\alpha}{4 - \tan\alpha} = \frac {3*(2)^2 + 4}{4 - 2} = 8 4tanα3tan2α+2tanα=423(2)2+4=8

3. 非齐次分式

已知 tan ⁡ α = 2 \tan \alpha = 2 tanα=2,求 sin ⁡ 2 α + 1 sin ⁡ α cos ⁡ α + cos ⁡ 2 α \frac {\sin^2 \alpha + 1}{\sin \alpha \cos \alpha + \cos^2 \alpha} sinαcosα+cos2αsin2α+1

步骤1:先判断分子分母中多项式的每一项是否齐次,分母中多项式为 sin ⁡ α cos ⁡ α \sin \alpha \cos \alpha sinαcosα cos ⁡ 2 α \cos^2 \alpha cos2α 都是二次项,分子中 sin ⁡ 2 α \sin^2 \alpha sin2α 是二次项, 1 1 1 是一次项。所以这个分式不是齐次的

步骤2:将这种特殊分式变为齐次式,利用同角恒等式 sin ⁡ 2 α + cos ⁡ 2 α = 1 \sin^2 \alpha + \cos^2 \alpha = 1 sin2α+cos2α=1,将 1 1 1 变成 sin ⁡ 2 α + cos ⁡ 2 α \sin^2 \alpha + \cos^2 \alpha sin2α+cos2α

步骤3:此时分式为 sin ⁡ 2 α + sin ⁡ 2 α + cos ⁡ 2 α sin ⁡ α cos ⁡ α + cos ⁡ 2 α \frac {\sin^2 \alpha + \sin^2 \alpha + \cos^2 \alpha}{\sin \alpha \cos \alpha + \cos^2 \alpha} sinαcosα+cos2αsin2α+sin2α+cos2α,分子分母中多项式的每一项都变为二次式了,满足齐次。后面就可以分子分母同除 cos ⁡ 2 α \cos^2 \alpha cos2α 解分式了

4. 整式

已知 tan ⁡ α = 2 \tan \alpha = 2 tanα=2,求 sin ⁡ 2 α + sin ⁡ α cos ⁡ α \sin^2 \alpha + \sin \alpha \cos \alpha sin2α+sinαcosα

步骤1:齐次式是将 cos ⁡ α \cos \alpha cosα sin ⁡ α \sin \alpha sinα 的分式,变为关于 tan ⁡ \tan tan 的式子。而题中是一个整式,所以要先将其变为分式

步骤2:我们知道整式除 1 1 1 值不变,所以可以将整式变为 sin ⁡ 2 α + sin ⁡ α cos ⁡ α 1 \frac {\sin^2 \alpha + \sin \alpha \cos \alpha}{1} 1sin2α+sinαcosα,此时分子都是二次项但分母是一次项

步骤3:利用同角恒等式 sin ⁡ 2 α + cos ⁡ 2 α = 1 \sin^2 \alpha + \cos^2 \alpha = 1 sin2α+cos2α=1,将 1 1 1 变成 sin ⁡ 2 α + cos ⁡ 2 α \sin^2 \alpha + \cos^2 \alpha sin2α+cos2α,变换后为 sin ⁡ 2 α +

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值