Source: Rizaudin Sahlan → Impulse Response Function with Stata (time series)
编译:许梦洁 (中山大学)
Stata连享会时间序列专题:
2019暑期“实证研究方法与经典论文”专题班-连玉君-江艇主讲
在这篇推文中,我们讨论 VAR 模型中的脉冲响应函数 (IRFs)。
模型推导
脉冲响应函数反映了当 VAR 模型某个变量受到"外生冲击"时,模型中其他变量受到的动态影响。我们会根据这些变量受到此冲击后的一段时间内的动态变化画出脉冲响应图形。
脉冲响应函数是一种条件预测,更确切地说,是一种点估计,只不过我们会估计冲击发生后不同时点的值。
类似于 AR 模型有 MA 表达形式,VAR 模型也有 VMA 表达形式。 VMA 表达形式有助于我们探求在 VAR 系统中变量收到冲击后的随时间变化的路径。考虑一个由 y t y_t yt 和 z t z_t zt 构成的VAR 系统:
(1) [ y t z t ] = [ a 10 a 20 ] + [ a 11 a 12 a 21 a 22 ] [ y t − 1 z t − 1 ] + [ e 1 t e 2 t ] \left[ \begin{array} { c } { y _ { t } } \\ { z _ { t } } \end{array} \right] = \left[ \begin{array} { c } { a _ { 10 } } \\ { a _ { 20 } } \end{array} \right] + \left[ \begin{array} { c c } { a _ { 11 } } & { a _ { 12 } } \\ { a _ { 21 } } & { a _ { 22 } } \end{array} \right] \left[ \begin{array} { c } { y _ { t - 1 } } \\ { z _ { t - 1 } } \end{array} \right] + \left[ \begin{array} { c } { e _ { 1 t } } \\ { e _ { 2 t } } \end{array} \right]\tag{1} [ytzt]=[a10a20]+[a11a21a12a22][yt−1zt−1]+[e1te2t](1)
该模型也可以写成如下形式:
(2) [ y t z t ] = [ y ‾ z ‾ ] + ∑ i = 0 ∞ [ a 11 a 12 a 21 a 22 ] i [ e 1 t − i e 2 t − i ] \left[ \begin{array} { c } { y _ { t } } \\ { z _ { t } } \end{array} \right] = \left[ \begin{array} { c } { \overline { y } } \\ { \overline { z } } \end{array} \right] + \sum _ { i = 0 } ^ { \infty } \left[ \begin{array} { c c } { a _ { 11 } } & { a _ { 12 } } \\ { a _ { 21 } } & { a _ { 22 } } \end{array} \right] ^ { i } \left[ \begin{array} { c } { e _ { 1 t - i } } \\ { e _ { 2 t - i } } \end{array} \right] \quad \tag{2} [ytzt]=[yz]+i=0∑∞[a11a21a12