系统建模与仿真之利用相关分析法辨识脉冲响应

        在这里分享我们《系统建模与仿真》课程的实验课的matlab编程题目,虽然我写的可能不太好,但是代码也可以给初学者提供参考。

        本实验以4倍M序列作为辨识信号的例子,通过仿真实验掌握利用相关分析法辨识脉冲响应的原理和方法。

实验报告部分

 

        e048e11b812c42a086f797e19a479b15.png

        024be0c8ca5c44b98a30ea8119198564.png                dc3fee629d2a433887e7ed109542a131.png

代码部分

链接里是别人写的参考代码,但是分成了多个函数,看着不方便,而且有些可以修改。

这里因为我做这个实验,所以自己写了代码,供同校以及其他有需要的人参考。

程序如下:

clear;%清屏
close all;
clc;
%生成m序列
r = 3;
a = 1;
delta_t = 1;
M = [1, 1, 0, 0, 0, 1];%设置6位寄存器
Np = 2^length(M)-1;%M序列周期
u = zeros(1,(r+1)*Np);
for i = 1 : (r+1)*Np
    u(i) = M(6);
    m = xor(M(6),M(5));
    M(2:6) = M(1:5);
    M(1) = m;
end
u = (1-2*u)*a;
figure,hold on
plot(u);
title("4倍长度M序列作为输入");
xlim([0, (r+1)*Np+1]);
hold off
%白噪声
A=27;x0=41;M=2^16;Num=(r+1)*Np;N=Num*30;
v=zeros(1,N);
for k = 1:N
    x2 = A*x0;
    x1 = mod(x2,M);
    v1 = x1/M;
    v(k) = v1;
    x0 = x1;
    v0 = v1;
end
B=reshape(v,Num,30);
noise=zeros(1,Num);
for i=1:Num
    noise(i)=(sum(B(i,:))-30/2)/(sqrt(30/12));
end
figure,hold on
histogram(noise,12); 
hold off;
% estimate g
T1=8.3;T2=6.2;
den = [T1*T2, T1+T2, 1];
K = 120;
G = tf(K, den);  
tt=0:length(u)-1;
Y = lsim(G, u, tt);
Y=Y';
Y_noise = Y + noise;
figure, hold on;
plot(1:length(noise),noise,'g');
plot(1:length(Y), Y,'r');
plot(1:length(Y_noise), Y_noise,'b');
legend(['Gaussain Noise',"System response","System response with noise"]);
xlim([0, length(Y)+1]);
hold off
time = 0:delta_t:(Np-1)*delta_t;
g0 = (120 / (T1-T2)) * (exp(-time./T1)-exp(-time./T2));%理论
Rmz=zeros(1,Np);
for tch=1:Np
    SUM=0;
    for tcl=Np+1:(r+1)*Np
        SUM=SUM+u(tcl-tch)*Y_noise(tcl);
    end
    Rmz(tch)=SUM/(r*Np);
end
g_hat=Np*(Rmz-Rmz(Np-1))/((a^2)*(Np+1)*delta_t);%估计
g2=g0-g_hat;%误差
figure, hold on
plot(1:Np, g0, 'r');
plot(1:Np, g_hat, 'b');
plot(1:Np, g2);
title("Result");
legend(["理论值","估计值","误差"]);
xlim([0, Np]);
hold off
figure,hold on
title("Rmz");
plot(1:Np, Rmz, 'r');
xlim([0, Np]);
hold off;
error_sum=0;square_sum=0;
for count=1:Np
    error_sum=error_sum+(g0(count)-g_hat(count))^2;
    square_sum=square_sum+g0(count)^2;
end
sigma_g=sqrt(error_sum/square_sum);
disp(['脉冲响应估计误差为:',num2str(sigma_g)]);

 

运行图片

6721d6b73e394d39b8c53affc45a5050.jpeg

b357bf36465f494489a1f7dd7a629c4e.jpeg

 

b7c537ada77440d4883371e03b631338.jpeg

b36990c69a7c43d7a7d13e8dbc6a335c.jpeg

实验结论

        实验生成了M序列以及满足标准正态分布的白噪声,并将M序列作为输入使用相关分析法辨识系统的脉冲响应,利用维纳霍夫方程辨识得到脉冲响应的估计值,同时直接通过公式算术得到并且用MATLAB画出脉冲响应的理论值,将两者对比,计算得到脉冲估计误差为0.082236。可以看到脉冲响应的理论值和估计值的图像比较接近,辨识效果较好。本次实验达到预期目标。

注意和问

        有人可能会问:误差0.082236不是挺大的了,平均8%了,其实是因为我懒而且没弄透原理,可能估计值图像右移一曲线能够更加贴合,但是这就会有什么矩阵行列不匹配类似的事就有些无休止了。如果你们交作业把误差作为评分标准的话,你们自己修改下例如在前面加一项0或者别的什么方法使其匹配。(这不是投机取巧,Y如果不加Noise进行辨识会发现图像是完美右移的状态,我也不好说) 我也不太懂,还是说不用改代码,有知道的人可以回复下。

修改参数比较

修改重复次数

修改为2倍M序列,即r=1,识别图像如下。

20718b9c58724cc893e78b1dc164ab10.jpeg

标题2倍M序列

我们可以发现识别效果比4倍M序列效果差。

 

<think>好的,我现在需要帮助用户解决关于Dify循环实现的问题。首先,我需要明确用户的具体需求。他们提到“dify 循环实现”或“dify 如何处理循环”,但Dify本身可能没有直接称为“循环”的功能,所以需要结合现有文档中的信息来推断可能的解决方案。 根据用户提供的引用内容,Dify工作流中有迭代节点[^1]。这可能类似于编程中的循环结构,用于重复执行某个任务。例如,在处理列表数据或需要多次执行同一操作时,迭代节点可以派上用场。我需要详细解释迭代节点的配置和使用步骤,确保用户能够理解如何设置循环次数或遍历数据集。 另外,用户可能对如何处理循环中的错误或性能问题感兴趣。引用[2]提到在Dify中处理PEM文件的问题,这可能涉及在循环中正确处理数据格式,避免错误积累。需要提醒用户在循环中注意错误处理和资源管理,确保每次迭代的稳定性。 引用[3]中的例子展示了如何结合FastAPI和Selenium进行实时监控并生成GIF,这可能涉及循环截取浏览器内容。虽然Dify本身可能不直接控制这类循环,但可以通过外部脚本或定时任务触发工作流,模拟循环执行。这部分需要说明如何将外部循环机制与Dify结合使用。 接下来,我需要组织回答结构。首先介绍迭代节点的基本概念和配置步骤,然后讨论循环中的数据处理和错误处理,最后补充外部触发循环的方法。同时,生成相关问题以帮助用户进一步探索,比如优化循环性能或处理复杂数据结构。 需要确保回答符合格式要求,使用正确的中文表达,行内公式用$...$,独立公式用$$...$$,但当前问题不涉及数学公式,所以可能不需要使用。同时,引用标识要自然地添加到相关段落末尾,如、[^2]、[^3]。 最后,检查是否有遗漏点,比如Dify的其他循环相关功能或用户可能遇到的常见问题,确保回答全面且易于理解。</think>在Dify中处理循环逻辑主要通过**迭代节点**实现,以下是具体实现方式和应用场景的解析: ### 一、Dify循环实现机制 Dify通过**工作流设计器**中的迭代节点处理循环需求,其核心原理类似编程中的`for循环`。迭代节点可遍历以下数据类型: - 数组列表:`["A","B","C"]` - 字典集合:`{"key1":"value1", "key2":"value2"}` - 数值范围:通过`range()`函数生成序列 配置示例: ```python # 模拟迭代节点的数据输入 input_data = { "dataset": [1,2,3,4,5], "process_logic": "item * 2" # 对每个元素执行乘以2的操作 } ``` ### 二、迭代节点的关键配置步骤 1. **数据源绑定**:将数组/字典类型变量连接到迭代节点的输入端口 2. **循环变量命名**:设定当前元素的变量名(默认为`item`) 3. **子流程设计**:在迭代节点内部构建需要重复执行的逻辑模块 4. **结果聚合**:通过`outputs`收集所有迭代结果,支持数组或对象格式 $$ \text{总耗时} = \sum_{i=1}^{n}(单次迭代时间_i) + 系统开销 $$ ### 三、循环中的特殊处理 1. **错误中断控制**: - 启用`continueOnError`参数可跳过失败迭代 - 通过`try-catch`模块包裹敏感操作 2. **并行优化**: ```python # 伪代码示例 Parallel.forEach(dataset, lambda item: process(item)) ``` 3. **结果过滤**: ```python filtered = filter(lambda x: x%2==0, processed_results) ``` ### 四、应用场景案例 1. **批量文件处理**:遍历存储桶中的文件列表进行格式转换 2. **数据清洗**:对数据库查询结果集进行逐条校验 3. **API轮询**:定时循环调用第三方接口直到满足特定条件
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值