【Python机器学习及实践】实战篇:IMDB影评得分估计

本文介绍了IMDB影评数据集,用于情绪分析,包含5万条二元情感评分的影评。数据集分为训练集和测试集,其中训练集2.5万条,测试集2.5万条。文章提到了使用Scikit-learn的朴素贝叶斯和梯度提升分类树进行情感分析,通过词袋模型和TF-IDF进行特征提取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python机器学习及实践——实战篇:IMDB影评得分估计


IMDB影评得分估计

要求分析电影评论网站的留言,判断每条留言的情感倾向。 

IMDB影评数据集简介
       标签数据集包含5万条IMDB影评,专门用于情绪分析。评论的情绪是二元的,这意味着IMDB评级< 5导致情绪得分为0,而评级>=7的情绪得分为1。没有哪部电影的评论超过30条。标有training set的2.5万篇影评不包括与2.5万篇影评测试集相同的电影。此外,还有另外5万篇IMDB影评没有任何评级标签。
     The labeled data set consists of 50,000 IMDB movie reviews, specially selected for sentiment analysis. The sentiment of reviews is binary, meaning the IMDB rating < 5 results in a sentiment score of 0, and rating >=7 have a sentiment score of 1. No individual movie has more than 30 reviews. The 25,000 review labeled training set does not include any of the same movies as the 25,000 review test set. In addition, there a

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值