(11-3-02)检测以太坊区块链中的非法账户: 数据分析(1)

本文详细介绍了数据分析在金融欺诈检测中的应用,包括检查目标列的分布、创建欺诈与非欺诈交易的饼图、数据预处理(替换缺失值和清理分类特征)、计算相关性矩阵以及可视化特征间的关系。通过散点图展示不同属性之间的关系,以支持欺诈检测模型的构建。
摘要由CSDN通过智能技术生成

11.3.3  数据分析

(1)检查目标列(FLAG)的分布,其中0表示非欺诈交易,1表示欺诈交易。计算并显示了每个类别的数量,以帮助了解数据中欺诈和非欺诈交易的分布情况。具体实现代码如下所示。

dataset['FLAG'].value_counts()

执行后会输出:

0    7662
1    2179
Name: FLAG, dtype: int64

(2)创建一个饼图,显示了欺诈和非欺诈交易的分布情况。饼图中的百

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值