在图像数据中,特征提取通常涉及将原始像素数据转换为更高级别的表征,以便在后续任务中使用,如图像分类、目标检测、图像生成等。
6.6.1 预训练的图像特征提取模型
预训练的图像特征提取模型是在大规模图像数据集上训练的深度卷积神经网络(CNN)模型,这些模型可以有效地提取图像中的高级特征。通过在大量图像上训练,这些模型能够学习到通用的视觉特征,这些特征可以在多种图像相关任务中重复使用,例如图像分类、目标检测、图像生成等。下面是一些常见的预训练的图像特征提取模型:
- VGG16 和 VGG19:VGGNet 是一个经典的卷积神经网络,它通过堆叠多个卷积和池化层来提取图像特征。VGG16 和 VGG19 分别具有 16 和 19 个卷积层,在 ImageNet 数据集上进行了训练。
- ResNet:ResNet(Residual Network)引入了残差连接,允许网络更深地进行训练,避免了梯度消失问题。ResNet 以不同深度的变体存在,如 ResNet-50、ResNet-101 等。
- Inception:Inception 模型系列采用了多尺度卷积和不同卷积核尺