1.5.11 时间序列验证
(1)下面的代码首先创建了一个名为 'base' 的新列,该列包含了实际 'Close' 值的前一个时间点的值,用于与 ARIMA 模型的预测值进行比较。然后,通过使用指数函数(np.exp)将结果中的 'forecast'、'lower_interval' 和 'upper_interval' 列转换回原始价格的形式,以便进行可视化。这个操作将 DataFrame 的最后五行转换为原始价格。
result['base'] = result['Close'].shift()
result['base'].iloc[0] = y_train.to_frame().Close[-1]
result.apply(lambda x: np.exp(x).astyp