(15-11)基于时间序列预测的比特币自动交易系统:时间序列验证

本文介绍了如何使用ARIMA模型进行时间序列预测,并通过创建base列进行验证。文章详细解释了plot_forecast函数的使用,展示了预测结果的可视化,以及通过MAPE和MASE指标评估模型性能。最后,通过指数转换还原数据以进行直观比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.5.11  时间序列验证

(1)下面的代码首先创建了一个名为 'base' 的新列,该列包含了实际 'Close' 值的前一个时间点的值,用于与 ARIMA 模型的预测值进行比较。然后,通过使用指数函数(np.exp)将结果中的 'forecast'、'lower_interval' 和 'upper_interval' 列转换回原始价格的形式,以便进行可视化。这个操作将 DataFrame 的最后五行转换为原始价格。

result['base'] = result['Close'].shift()
result['base'].iloc[0] = y_train.to_frame().Close[-1]
result.apply(lambda x: np.exp(x).astyp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值