(4-3)混合推荐:策略层面的混合推荐

4.3  策略层面的混合推荐

在策略层面的混合推荐中,推荐系统使用多个推荐算法或策略来生成最终的推荐结果。这种方法旨在克服单一算法的局限性,并综合多个算法的优势,提供更准确和多样化的推荐。

4.3.1  动态选择推荐策略

动态选择推荐策略是指根据当前的情境和用户需求,自动选择最合适的推荐策略或算法来生成推荐结果。这种方法可以根据不同的因素进行策略选择,如用户特征、上下文信息、推荐系统的目标等。动态选择推荐策略的目的是为了提供个性化、精准和多样化的推荐体验。

下面是一些常见的动态选择推荐策略的方法:

  1. 用户特征:根据用户的特征和偏好,选择最适合的推荐策略。例如,对于新用户可以采用基于内容的推荐策略,而对于活跃用户可以采用协同过滤或混合推荐策略。
  2. 上下文信息:根据用户的上下文信息,如时间、地点、设备等,选择最合适的推荐策略。例如,在早晨推荐早餐相关的内容,在晚上推荐电影或音乐相关的内容。
  3. 推荐系统的目标:根据推荐系统的目标和优化指标,选择最合适的推荐策略。例如,如果推荐系统的目标是提高点击率,可以选择基于热门物品的推荐策略;如果目标是提高用户满意度,可以选择个性化的推荐策略。
  4. A/B 测试:使用 A/B 测试来评估不同策略的性能,然后根据测试结果动态选择最佳的推荐策略。通过比较不同策略的转化率、点击率、用户满意度等指标,可以找到最有效的推荐策略。
  5. 强化学习:应用强化学习方法来动态选择推荐策略。通过与用户的交互和反馈,推荐系统可以学习并优化策略选择的决策过程,以提供更好的推荐结果。

动态选择推荐策略可以根据实际需求和应用场景进行定制和调整。通过根据不同因素选择最适合的策略,可以提高推荐系统的性能、用户满意度和个性化程度。请看下面的实例,使用动态选择推荐策实现推荐系统。

源码路径:daima/4/dong.py

import random

# 模拟情感分析函数,根据用户文本判断情绪
def analyze_sentiment(text):
    # 在这个例子中,我们随机生成情绪(正面、负面、中性)
    sentiments = ['Positive', 'Negative', 'Neutral']
    sentiment = random.choice(sentiments)
    return sentiment

# 根据用户情绪选择推荐策略
def select_recommendation_strategy(sentiment):
    if sentiment == 'Positive':
        # 正面情绪,选择基于内容的推荐策略
        return content_based_recommendation
    elif sentiment == 'Negative':
        # 负面情绪,选择协同过滤推荐策略
        return collaborative_filtering_recommendation
    else:
        # 中性情绪,选择随机推荐策略
        return random_recommendation

# 基于内容的推荐策略
def content_based_recommendation(user_id):
    # 实现基于内容的推荐逻辑,返回推荐结果
    # 这里只是示例,您可以根据实际情况自行编写具体的代码
    recommended_movies = ['Movie 1', 'Movie 2', 'Movie 3']
    return recommended_movies

# 协同过滤推荐策略
def collaborative_filtering_recommendation(user_id):
    # 实现协同过滤的推荐逻辑,返回推荐结果
    # 这里只是示例,您可以根据实际情况自行编写具体的代码
    recommended_movies = ['Movie 4', 'Movie 5', 'Movie 6']
    return recommended_movies

# 随机推荐策略
def random_recommendation(user_id):
    # 实现随机推荐的逻辑,返回推荐结果
    # 这里只是示例,您可以根据实际情况自行编写具体的代码
    recommended_movies = ['Movie 7', 'Movie 8', 'Movie 9']
    return recommended_movies

# 模拟用户文本输入
user_text = "今天天气真好,心情很不错!"

# 执行情感分析,获取用户情绪
user_sentiment = analyze_sentiment(user_text)

# 根据情绪选择推荐策略
recommendation_strategy = select_recommendation_strategy(user_sentiment)

# 使用选择的推荐策略生成推荐结果
user_id = 1
recommended_movies = recommendation_strategy(user_id)
print("Recommended movies:", recommended_movies)

在上述代码中,首先模拟了一个情感分析函数 analyze_sentiment(),根据用户输入的文本判断用户的情绪。然后,分别定义了三种不同的推荐策略:基于内容的推荐策略 content_based_recommendation,协同过滤的推荐策略 collaborative_filtering_recommendation,以及随机推荐策略 random_recommendation。根据用户的情绪,使用函数select_recommendation_strategy()来选择适合的推荐策略。最后,通过调用选择的推荐策略来生成推荐结果,并打印输出到屏幕上。执行后会输出推荐的电影:

Recommended movies: ['Movie 4', 'Movie 5', 'Movie 6']

注意:这只是一个简单的例子,具体的推荐逻辑需要根据实际情况进行开发和调整。以上代码提供了一个框架和思路,大家可以根据自己的需求和数据来编写更加复杂和准确的推荐系统。

4.3.2  上下文感知的推荐策略

上下文感知的推荐策略是指在推荐系统中考虑用户当前的上下文信息,例如时间、地点、设备等,来提供更加个性化和精准的推荐结果。通过综合考虑用户的上下文信息,推荐系统可以更好地理解用户的需求和偏好,从而进行更加准确的推荐。

注意:上下文感知的推荐策略可以通过收集和分析用户的上下文信息,结合推荐算法和模型来实现。这种个性化的推荐方式可以提高用户的满意度和参与度,为用户提供更加贴合其需求的推荐结果。同时,上下文感知的推荐策略也需要在保护用户隐私的前提下进行设计和实施。

下面介绍几种常见的上下文感知的推荐策略:

1时间上下文感知

  1. 基于时间的推荐:根据用户当前的时间信息,推荐与当前时间相关的内容,例如在节假日推荐假日活动、在晚上推荐电影等。
  2. 季节性推荐:根据不同季节的特点,推荐与季节相关的商品或服务,例如夏季推荐游泳装备、冬季推荐滑雪装备等。

例如下面是一个使用时间上下文感知实现推荐策略的例子。

源码路径:daima/4/time.py

import datetime

# 模拟获取用户喜好数据的函数
def get_user_preferences(user_id):
    # 假设用户的喜好数据存储在一个字典中,键为电影ID,值为用户对该电影的评分
    user_preferences = {
        1: 5,
        2: 4,
        3: 2,
        # 添加更多的电影和评分数据
    }
    return user_preferences

# 模拟获取电影数据的函数
def get_movie_data():
    # 假设电影数据存储在一个字典中,键为电影ID,值为电影的信息(例如标题、类型等)
    movie_data = {
        1: {'title': 'Movie 1', 'genre': 'Action'},
        2: {'title': 'Movie 2', 'genre': 'Comedy'},
        3: {'title': 'Movie 3', 'genre': 'Drama'},
        # 添加更多的电影和信息数据
    }
    return movie_data

# 根据时间上下文推荐电影
def time_aware_recommendation(user_id):
    current_time = datetime.datetime.now()
    current_hour = current_time.hour

    if current_hour < 12:
        # 上午时间段,推荐喜好评分较高的类型为喜剧的电影
        recommendations = get_movie_recommendations(user_id, 'Comedy', 5)
    elif current_hour < 18:
        # 下午时间段,推荐喜好评分较高的类型为动作的电影
        recommendations = get_movie_recommendations(user_id, 'Action', 5)
    else:
        # 晚上时间段,推荐喜好评分较高的类型为剧情的电影
        recommendations = get_movie_recommendations(user_id, 'Drama', 5)

    return recommendations

# 根据用户喜好和类型获取电影推荐
def get_movie_recommendations(user_id, genre, num_recommendations):
    user_preferences = get_user_preferences(user_id)
    movie_data = get_movie_data()

    # 筛选符合指定类型的电影
    genre_movies = [movie_id for movie_id, movie_info in movie_data.items() if movie_info['genre'] == genre]

    # 根据用户喜好评分对电影进行排序
    sorted_movies = sorted(genre_movies, key=lambda x: user_preferences.get(x, 0), reverse=True)

    # 获取推荐的电影列表
    recommended_movies = sorted_movies[:num_recommendations]

    return recommended_movies

# 调用推荐函数
user_id = 1
recommendations = time_aware_recommendation(user_id)
print(recommendations)

在上述代码中,根据当前时间的小时数确定用户所处的时间段,然后根据时间段选择相应的电影类型。例如,在上午时间段会推荐喜剧类型的电影,下午时间段会推荐动作类型的电影,晚上时间段会推荐剧情类型的电影。根据用户的喜好评分对符合类型的电影进行排序,然后选择排名靠前的几部电影作为推荐结果.请注意,以上代码中的 get_user_preferences()和 get_movie_data()是示例函数,需要根据实际需求实现相应的数据获取逻辑。执行后会输出下面的结果,这表示推荐给用户的电影列表中只包含电影ID为 1 的电影。

[1]

(2)地理位置上下文感知

  1. 基于位置的推荐:根据用户当前的地理位置信息,推荐附近的商家、景点或活动等。
  2. 地域性推荐:根据用户所在地区的特点,推荐与该地区相关的内容,例如当地的新闻、活动等。

例如下面是一个使用地理位置上下文感知实现推荐策略的例子。

源码路径:daima/4/dili.py

import pandas as pd
import math

# 用户数据
users_data = {
    'user_id': [1, 2, 3, 4, 5],
    'latitude': [40.7128, 34.0522, 51.5074, 37.7749, 45.4215],
    'longitude': [-74.0060, -118.2437, -0.1278, -122.4194, -75.6906],
}

# 电影数据
movies_data = {
    'movie_id': [1, 2, 3, 4, 5],
    'title': ['Movie 1', 'Movie 2', 'Movie 3', 'Movie 4', 'Movie 5'],
    'latitude': [40.7128, 34.0522, 51.5074, 37.7749, 45.4215],
    'longitude': [-74.0060, -118.2437, -0.1278, -122.4194, -75.6906],
}

# 用户-电影评分数据
ratings_data = {
    'user_id': [1, 1, 2, 2, 3],
    'movie_id': [1, 2, 2, 3, 4],
    'rating': [5, 4, 3, 4, 5]
}

# 创建用户数据框
users_df = pd.DataFrame(users_data)

# 创建电影数据框
movies_df = pd.DataFrame(movies_data)

# 创建评分数据框
ratings_df = pd.DataFrame(ratings_data)

# 地理位置上下文感知推荐策略
def location_aware_recommendation(user_id, max_distance):
    # 获取用户评分过的电影
    user_ratings = ratings_df[ratings_df['user_id'] == user_id]

    # 获取用户的地理位置
    user_location = users_df.loc[users_df['user_id'] == user_id, ['latitude', 'longitude']].values[0]

    # 去除用户已评分的电影
    unrated_movies = movies_df[~movies_df['movie_id'].isin(user_ratings['movie_id'])].copy()

    # 计算用户与电影之间的地理距离
    unrated_movies['distance'] = unrated_movies.apply(lambda row: haversine_distance(user_location, [row['latitude'], row['longitude']]), axis=1)

    # 根据地理距离筛选推荐的电影
    recommended_movies = unrated_movies[unrated_movies['distance'] <= max_distance]

    return recommended_movies

# Haversine公式计算地理距离
def haversine_distance(coord1, coord2):
    lat1, lon1 = coord1
    lat2, lon2 = coord2

    # 转换为弧度
    lon1, lat1, lon2, lat2 = map(math.radians, [lon1, lat1, lon2, lat2])

    # Haversine公式
    dlon = lon2 - lon1
    dlat = lat2 - lat1
    a = math.sin(dlat/2)**2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon/2)**2
    c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
    r = 6371  # 地球半径(单位:千米)
    distance = r * c

    return distance

# 测试地理位置上下文感知推荐策略
user_id = 1
max_distance = 1000  # 最大距离限制(单位:千米)
recommendations = location_aware_recommendation(user_id, max_distance)
print(recommendations['title'].tolist())

上述代码的具体说明如下:

  1. 首先,定义了用户数据(users_data),电影数据(movies_data)和用户-电影评分数据(ratings_data)。这些数据是用字典表示的,其中包含了用户ID、经纬度等信息。
  2. 然后,使用函数pd.DataFrame()创建了三个数据框:users_df用于存储用户数据,movies_df用于存储电影数据,ratings_df用于存储评分数据。
  3. 接下来,定义了函数location_aware_recommendation(),该函数接受用户ID和最大距离限制作为输入参数。该函数的作用是根据用户的地理位置信息和最大距离限制来推荐符合条件的电影。在函数内部,首先获取了用户评分过的电影(user_ratings)和用户的地理位置信息(user_location);然后,复制了未评分的电影数据框(unrated_movies),并通过函数isin()去除了用户已评分的电影。接着,我们使用函数apply()计算用户与电影之间的地理距离,并将结果存储在distance列中。最后,根据地理距离筛选出符合最大距离限制的推荐电影,并将结果返回。
  4. 在代码的最后部分,调用函数location_aware_recommendation()来测试地理位置上下文感知推荐策略。我们传入了一个用户ID和最大距离限制,并将推荐的电影标题打印出来。

执行后会输出符合最大距离限制并且用户未评分过的电影标题列表:

['Movie 5']

(3)设备上下文感知

  1. 响应式布局推荐:根据用户当前使用的设备类型(手机、平板、电脑等),为其提供适配的推荐布局和界面。
  2. 设备特性推荐:根据用户设备的特性,例如屏幕尺寸、处理能力等,推荐适合该设备的内容和应用。

例如下面是一个使用设备上下文感知实现推荐策略的例子。

源码路径:daima/4/she.py

import pandas as pd

# 用户数据
users_data = {
    'user_id': [1, 2, 3, 4, 5],
    'device_type': ['mobile', 'desktop', 'mobile', 'tablet', 'desktop'],
}

# 电影数据
movies_data = {
    'movie_id': [1, 2, 3, 4, 5],
    'title': ['Movie 1', 'Movie 2', 'Movie 3', 'Movie 4', 'Movie 5'],
    'device_type': ['mobile', 'desktop', 'desktop', 'tablet', 'mobile'],
}

# 用户-电影评分数据
ratings_data = {
    'user_id': [1, 1, 2, 2, 3],
    'movie_id': [1, 2, 2, 3, 4],
    'rating': [5, 4, 3, 4, 5]
}

# 创建用户数据框
users_df = pd.DataFrame(users_data)

# 创建电影数据框
movies_df = pd.DataFrame(movies_data)

# 创建评分数据框
ratings_df = pd.DataFrame(ratings_data)

# 设备上下文感知推荐策略
def device_aware_recommendation(user_id):
    # 获取用户评分过的电影
    user_ratings = ratings_df[ratings_df['user_id'] == user_id]

    # 获取用户的设备类型
    user_device_type = users_df.loc[users_df['user_id'] == user_id, 'device_type'].values[0]

    # 去除用户已评分的电影
    unrated_movies = movies_df[~movies_df['movie_id'].isin(user_ratings['movie_id'])]

    # 筛选符合用户设备类型的电影
    recommended_movies = unrated_movies[unrated_movies['device_type'] == user_device_type]

    return recommended_movies

# 测试设备上下文感知推荐策略
user_id = 1
recommendations = device_aware_recommendation(user_id)
print(recommendations['title'].tolist())

在上述代码中有用户数据、电影数据和用户-电影评分数据。通过创建用户数据框、电影数据框和评分数据框,我们可以实现设备上下文感知的推荐策略。该策略根据用户的设备类型,推荐符合用户设备类型的未评分电影。在示例中,我们测试了用户ID为1的用户的推荐结果,并打印输出了电影的标题列表。根据实际情况,推荐结果将会根据用户的设备类型进行筛选。执行后会输出:

['Movie 5']

(4)用户行为上下文感知

  1. 用户历史行为推荐:根据用户过去的浏览、购买、评价等行为,推荐与用户兴趣相关的内容。
  2. 实时用户行为推荐:根据用户当前的浏览、点击、搜索等行为,实时推荐与用户当前需求相关的内容。

例如下面是一个使用用户行为上下文感知实现推荐策略的例子。

源码路径:daima/4/yonghu.py

import pandas as pd

# 用户数据
users_data = {
    'user_id': [1, 2, 3, 4, 5],
    'age': [25, 30, 35, 40, 45],
    'gender': ['M', 'F', 'M', 'M', 'F']
}

# 电影数据
movies_data = {
    'movie_id': [1, 2, 3, 4, 5],
    'title': ['Movie 1', 'Movie 2', 'Movie 3', 'Movie 4', 'Movie 5'],
    'genre': ['Action', 'Comedy', 'Drama', 'Action', 'Comedy']
}

# 用户-电影评分数据
ratings_data = {
    'user_id': [1, 1, 2, 2, 3],
    'movie_id': [1, 2, 2, 3, 4],
    'rating': [5, 4, 3, 4, 5]
}

# 创建用户数据框
users_df = pd.DataFrame(users_data)

# 创建电影数据框
movies_df = pd.DataFrame(movies_data)

# 创建评分数据框
ratings_df = pd.DataFrame(ratings_data)

# 用户行为上下文感知推荐策略
def behavior_aware_recommendation(user_id):
    # 获取用户评分过的电影
    user_ratings = ratings_df[ratings_df['user_id'] == user_id]

    # 获取用户的年龄和性别
    user_info = users_df.loc[users_df['user_id'] == user_id, ['age', 'gender']].values[0]
    user_age = user_info[0]
    user_gender = user_info[1]

    # 根据用户的年龄和性别筛选推荐的电影
    recommended_movies = movies_df[(movies_df['movie_id'].isin(user_ratings['movie_id'])) & (movies_df['genre'] != 'Drama')]
    
    # 去除用户已评分的电影
    recommended_movies = recommended_movies[~recommended_movies['movie_id'].isin(user_ratings['movie_id'])]

    return recommended_movies

# 测试用户行为上下文感知推荐策略
user_id = 1
recommendations = behavior_aware_recommendation(user_id)
print(recommendations['title'].tolist())

对上述代码的具体说明如下:

  1. 首先,定义了三个字典 users_data、movies_data 和 ratings_data,它们分别表示用户数据、电影数据和用户-电影评分数据。这些字典包含了一些用户的年龄、性别,电影的标题、类型以及用户对电影的评分信息。
  2. 接下来,使用这些字典创建了三个数据框 users_df、movies_df 和 ratings_df,它们分别表示用户数据、电影数据和评分数据的数据框。数据框是 pandas 提供的一种数据结构,类似于表格,可以方便地进行数据处理和分析。
  3. 然后定义了函数 behavior_aware_recommendation(user_id),用于实现用户行为上下文感知的推荐策略。这个函数接收一个 user_id 参数,用于指定要为哪个用户进行推荐。在函数内部,首先通过筛选评分数据框 ratings_df,获取特定用户评分过的电影信息,存储在 user_ratings 数据框中。接着,使用用户数据框 users_df 根据 user_id 获取特定用户的年龄和性别信息,存储在 user_info 变量中。
  4. 接下来,根据用户的年龄和性别,结合电影数据框 movies_df 进行推荐电影的筛选。在这个例子中,我们筛选出了不是 "Drama" 类型的电影,并且这些电影的类型与用户评分过的电影类型相同。
  5. 最后,返回筛选后的推荐电影数据框 recommended_movies。
  6. 在测试部分定义了一个 user_id,并调用 behavior_aware_recommendation() 函数,将 user_id 作为参数传入,获取推荐的电影数据框。然后,通过 print(recommendations['title'].tolist()) 输出了推荐电影的标题列表。

注意:如果推荐结果为空列表 [],可能是因为根据提供的数据进行筛选后没有符合条件的推荐电影。

本《混合推荐》专题已完结:

(4-1)混合推荐:特征层面的混合推荐-CSDN博客

(4-2)混合推荐:模型层面的混合推荐-CSDN博客

  • 28
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值