11.4 PPO算法的变种与改进
Proximal Policy Optimization (PPO) 是一个强化学习算法,具有一些变种和改进版本,以解决一些PPO原始版本的限制或提高其性能。在本节的内容中,将详细讲解这些改进。
11.4.1 PPO-Clip算法
PPO-Clip(Proximal Policy Optimization with Clipping)是一种改进的PPO算法,用于训练强化学习智能体,特别是在连续动作空间中的任务。它旨在提高PPO的稳定性和收敛性。PPO-Clip的核心思想是通过两个关键机制来控制策略更新的幅度,从而增强算法的稳定性:
- 重要性采样比率的剪切(Clipping Importance Sampling Ratio):在PPO-Clip中,为了衡量新策略和旧策略之间的相对性能,使用了重要性采样比率。具体而言,对于每个采样的状态-动作对(s, a),计算了新策略和旧策略下执行动作a的概率比值: