(11-4)PPO算法:PPO算法的变种与改进

11.4  PPO算法的变种与改进

Proximal Policy Optimization (PPO) 是一个强化学习算法,具有一些变种和改进版本,以解决一些PPO原始版本的限制或提高其性能。在本节的内容中,将详细讲解这些改进。

11.4.1  PPO-Clip算法

PPO-Clip(Proximal Policy Optimization with Clipping)是一种改进的PPO算法,用于训练强化学习智能体,特别是在连续动作空间中的任务。它旨在提高PPO的稳定性和收敛性。PPO-Clip的核心思想是通过两个关键机制来控制策略更新的幅度,从而增强算法的稳定性:

  1. 重要性采样比率的剪切(Clipping Importance Sampling Ratio):在PPO-Clip中,为了衡量新策略和旧策略之间的相对性能,使用了重要性采样比率。具体而言,对于每个采样的状态-动作对(s, a),计算了新策略和旧策略下执行动作a的概率比值:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值