14.5 IQN (Implicit Quantile Network)算法
IQN(Implicit Quantile Network)算法是一种值分布式强化学习算法,旨在估计值函数的分布。与传统的DQN(Deep Q-Network)算法不同,IQN使用一种隐式分位数网络来估计值函数分布,从而更好地处理值函数的不确定性。
14.5.1 IQN 算法的原理与背景
IQN算法是一种值分布式强化学习算法,其原理与背景涉及到值函数的分布估计和分位数回归。下面是IQN算法的原理和背景:
1. 值函数分布估计
在强化学习中,通常需要估计一个状态-动作对的值函数,表示在该状态下采取某个动作的期望回报。传统的方法是使用一个单一值来估计这个期望值,例如Q-learning中的Q值。然而,这种方式无法表示值函数的不确定性,因为它仅提供一个点估计。