(9-6)基于感知轨迹预测模型(BAT)的目标行为预测系统:池化模块

9.4.3  池化模块

在深度学习中,池化(Pooling)是一种降采样操作,通常用于减小数据维度、提取关键特征、减少计算量,以及防止过拟合。在本项目中,文件pooling_module.py定义了用于模型中不同池化机制的函数,包括SLSTM(Sum LSTM)、CS-LSTM(Convolutional Social LSTM)和SGAN/Polar-Pooling。此外,还包括用于位置编码的模块(PositionalEncoding)。具体而言,该文件中的函数实现了对社交嵌入数据进行不同类型的池化操作,包括基于和相邻车辆位置关系的SGAN/Polar-Pooling。其中,PositionalEncoding模块用于对输入进行位置编码。

device = "cuda:0" or "cuda:1" if args["use_cuda"] else "cpu"
# Main Pooling Function
# 主要池化函数
 
'positon encoder'
# 位置编码器
class PositionalEncoding(nn.Module):
 
    def __init__(self, d_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值