9.4.3 池化模块
在深度学习中,池化(Pooling)是一种降采样操作,通常用于减小数据维度、提取关键特征、减少计算量,以及防止过拟合。在本项目中,文件pooling_module.py定义了用于模型中不同池化机制的函数,包括SLSTM(Sum LSTM)、CS-LSTM(Convolutional Social LSTM)和SGAN/Polar-Pooling。此外,还包括用于位置编码的模块(PositionalEncoding)。具体而言,该文件中的函数实现了对社交嵌入数据进行不同类型的池化操作,包括基于和相邻车辆位置关系的SGAN/Polar-Pooling。其中,PositionalEncoding模块用于对输入进行位置编码。
device = "cuda:0" or "cuda:1" if args["use_cuda"] else "cpu"
# Main Pooling Function
# 主要池化函数
'positon encoder'
# 位置编码器
class PositionalEncoding(nn.Module):
def __init__(self, d_