15.5 PlaNet算法
PlaNet(Planning Network)是一种强化学习算法,旨在解决模型化强化学习问题。该算法由DeepMind于2019年提出,并通过联合学习环境动力学模型和价值函数来实现高效的规划和控制。PlaNet的主要目标是在模型不完美的情况下实现高性能的强化学习,以便在真实世界的复杂任务中应用。
15.5.1 PlaNet算法介绍
PlaNet算法是由DeepMind提出的一种模型化强化学习(Model-Based Reinforcement Learning,MBRL)方法,其核心概念如下所示。
- 模型学习:PlaNet算法的核心思想是学习一个模型,该模型可以预测环境中状态的转移和即时奖励。这个模型是一个神经网络,接受当前状态和动作作为输入,并预测下一个状态和奖励。模型的训练是通过与真实环境进行交互来完成的。
- 规划和探索: 一旦模型被训练好了,PlaNet使用这个模型来进行规划和控制。它使用规划算法(例如,