(15-5)基于模型的强化学习:PlaNet算法

本文介绍了PlaNet算法,一种由DeepMind提出的MBRL方法,它结合模型学习、规划和控制,尤其在模型不完美情况下仍能实现高效性能。文章详细解释了算法原理,包括模型预测、内部模型世界和探索策略,并通过一个简化的例子展示了其实现过程。
摘要由CSDN通过智能技术生成

15.5  PlaNet算法

PlaNet(Planning Network)是一种强化学习算法,旨在解决模型化强化学习问题。该算法由DeepMind于2019年提出,并通过联合学习环境动力学模型和价值函数来实现高效的规划和控制。PlaNet的主要目标是在模型不完美的情况下实现高性能的强化学习,以便在真实世界的复杂任务中应用。

15.5.1  PlaNet算法介绍

PlaNet算法是由DeepMind提出的一种模型化强化学习(Model-Based Reinforcement Learning,MBRL)方法,其核心概念如下所示。

  1. 模型学习:PlaNet算法的核心思想是学习一个模型,该模型可以预测环境中状态的转移和即时奖励。这个模型是一个神经网络,接受当前状态和动作作为输入,并预测下一个状态和奖励。模型的训练是通过与真实环境进行交互来完成的。
  2. 规划和探索: 一旦模型被训练好了,PlaNet使用这个模型来进行规划和控制。它使用规划算法(例如,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值