(16-5)多智能体Predator-Prey游戏实战:DDPG实现

本文详细介绍了如何实现深度确定性策略梯度(DDPG)算法的代理类DDPGAgent,包括状态-动作处理、经验回放缓冲区ReplayBuffer的使用、Actor和Critic模型的构建,以及模型的训练和更新过程。重点讨论了如何在连续动作空间中应用DDPG,以及通信在网络中的作用。
摘要由CSDN通过智能技术生成

16.8  DDPG实现

实现DDPG(Deep Deterministic Policy Gradient)算法的代理类(DDPGAgent)以及相关的工具类。DDPG是一种用于连续动作空间的深度强化学习算法,其中包括了一个演员网络(Actor)和一个评论家网络(Critic),同时还有经验回放缓冲区(ReplayBuffer)等组件。在本节的内容中,将详细讲解本项目实现了DDPG算法的代理类(DDPGAgent)以及相关的工具类的过程。实现了一个基本的DDPG代理类,用于在连续动作空间中训练智能体。在训练过程中,智能体会不断地与环境交互,更新演员和评论家网络的参数,以学习最优策略。模型参数可以保存和加载,以便在需要时继续训练或测试。

16.8.1  信息存储

首先定义命名元组Transition,用于表示经验回放缓冲区中的一条经验,包括状态(state)、动作(action)、通信(communication)、奖励(r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值