16.8 DDPG实现
实现DDPG(Deep Deterministic Policy Gradient)算法的代理类(DDPGAgent)以及相关的工具类。DDPG是一种用于连续动作空间的深度强化学习算法,其中包括了一个演员网络(Actor)和一个评论家网络(Critic),同时还有经验回放缓冲区(ReplayBuffer)等组件。在本节的内容中,将详细讲解本项目实现了DDPG算法的代理类(DDPGAgent)以及相关的工具类的过程。实现了一个基本的DDPG代理类,用于在连续动作空间中训练智能体。在训练过程中,智能体会不断地与环境交互,更新演员和评论家网络的参数,以学习最优策略。模型参数可以保存和加载,以便在需要时继续训练或测试。
16.8.1 信息存储
首先定义命名元组Transition,用于表示经验回放缓冲区中的一条经验,包括状态(state)、动作(action)、通信(communication)、奖励(r