12.5 RAG
在本节将介绍使用检索增强生成(RAG)技术,结合微调的语言模型,提供了一种有效的方式来回答Python编程问题。RAG允许模型从检索到的相关文档中提取信息,并在生成答案时利用这些信息,从而提高了答案的准确性和全面性。通过RAG赋能,我们的模型在回答Python问题时能够产生更具相关性和详细性的答案,为软件工程师提供了更好的支持和指导。
12.5.1 RAG适配器
在本项目中,将使用 LangChain 包装 RAG 模型的适配器。适配器包含一个 _call() 方法,该方法会被 LangChain 调用。在调用过程中,首先将提示进行分词处理,然后传递给模型生成响应,最后对生成的响应进行解码并返回。我们不返回整个生成的序列,而是删除提示部分,只保留模型的“响应”部分。