(24-4-01)基于大模型的Python学习系统(Gemma+Langchain+FAISS):RAG(1)

12.5  RAG

在本节将介绍使用检索增强生成(RAG)技术,结合微调的语言模型,提供了一种有效的方式来回答Python编程问题。RAG允许模型从检索到的相关文档中提取信息,并在生成答案时利用这些信息,从而提高了答案的准确性和全面性。通过RAG赋能,我们的模型在回答Python问题时能够产生更具相关性和详细性的答案,为软件工程师提供了更好的支持和指导。

12.5.1  RAG适配器

在本项目中,将使用 LangChain 包装 RAG 模型的适配器。适配器包含一个 _call() 方法,该方法会被 LangChain 调用。在调用过程中,首先将提示进行分词处理,然后传递给模型生成响应,最后对生成的响应进行解码并返回。我们不返回整个生成的序列,而是删除提示部分,只保留模型的“响应”部分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值