在本节的内容中,将详细讲解本项目的具体实现过程,这主要包括文本拆分、加载和使用LLM模型、架构和部署对话系统等模块。
13.3.1 系统配置
在本项目中,文件config.py配置了设备、模型缓存和向量存储路径的信息,并配置了可用的嵌入模型和大型语言模型(LLM)。具体包括根据硬件设置设备(CUDA、MPS、CPU),定义模型缓存和向量存储路径,初始化默认模型,并列出支持的嵌入模型和 LLM 的字典。这些配置使项目能够灵活地管理和使用不同的模型和硬件资源。
import os
import torch
# 设备配置
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"