本文已参与「新人创作礼」活动,一起开启掘金创作之路
基础数学实现
导入相应库:
import math
import numpy as np
ceil 实现
ceil(x) 取大于等于 x 的最小的整数值,如果 x 是一个整数,则返回自身。
代码输入:
math.ceil(4.01)
结果输出:
5
代码输入:
math.ceil(4.99)
结果输出:
5
floor 实现
floor(x)取小于等于 x 的最大的整数值,如果 x 是一个整数,则返回自身。
代码输入: .
math.floor(4.1)
结果输出: 4
代码输入:
math.floor(4.999)
结果输出: 4
degrees 实现
degrees(x)把 x 从弧度转换成角度。
代码输入:
math.degrees(math.pi/4)
结果输出: 45.0
代码输入:
math.degrees(math.pi)
结果输出: 180.0
线性代数内容介绍
线性代数是一门被广泛运用于各工程技术领域的学科。用线性代数的相关概念和结论,可以极 大地简化数据挖掘中相关公式的推导和表述。线性代数将复杂的问题简单化,让我们能够对问 题进行高效地数学运算。
线性代数是一个数学工具,它不仅提供了有助于操作数组的技术,还提供了像向量和矩阵这样 的数据结构用来保存数字和规则,以便进行加,减,乘,除的运算。
线性代数实现
导入相应库:
import numpy as np
import scipy as sp
reshape 运算
在数学中并没有 reshape 运算,但是在 numpy 运算库中是一个非常常用的运算,用来改变 一个张量的维度数和每个维度的大小,例如一个 10x10 的图片在保存时直接保存为一个包含 100 个元素的序列,在读取后就可以使用 reshape 将其从 1x100 变换为 10x10。示例如下:
代码输入:
生成一个包含整数 0~11 的向量
x = np.arange(12)
print(x)
结果输出: [ 0 1 2 3 4 5 6 7 8 9 10 11]
查看数组大小
x.shape
结果输出: (12,)
将 x 转换成二维矩阵,其中矩阵的第一个维度为 1
x = x.reshape(1,12)
print(x)
结果输出: [[ 0, 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11]]
查看数组大小
x.shape
结果输出: (1, 12)
将 x 转换 3x4 的矩阵
x = x.reshape(3,4)
print(x)
结果输出: [[ 0, 1, 2, 3], [ 4, 5, 6, 7],[ 8, 9, 10, 11]]