python 数学

本文已参与「新人创作礼」活动,一起开启掘金创作之路

基础数学实现

导入相应库:

import math

import numpy as np

ceil 实现

ceil(x) 取大于等于 x 的最小的整数值,如果 x 是一个整数,则返回自身。

代码输入:

math.ceil(4.01)

结果输出:

5

代码输入:

math.ceil(4.99)

结果输出:

5

floor 实现

floor(x)取小于等于 x 的最大的整数值,如果 x 是一个整数,则返回自身。

代码输入: .

math.floor(4.1)

结果输出: 4

代码输入:

math.floor(4.999)

结果输出: 4

degrees 实现

degrees(x)把 x 从弧度转换成角度。

代码输入:

math.degrees(math.pi/4)

结果输出: 45.0

代码输入:

math.degrees(math.pi)

结果输出: 180.0

线性代数内容介绍

线性代数是一门被广泛运用于各工程技术领域的学科。用线性代数的相关概念和结论,可以极 大地简化数据挖掘中相关公式的推导和表述。线性代数将复杂的问题简单化,让我们能够对问 题进行高效地数学运算。

线性代数是一个数学工具,它不仅提供了有助于操作数组的技术,还提供了像向量和矩阵这样 的数据结构用来保存数字和规则,以便进行加,减,乘,除的运算。

线性代数实现

导入相应库:

import numpy as np

import scipy as sp

reshape 运算

在数学中并没有 reshape 运算,但是在 numpy 运算库中是一个非常常用的运算,用来改变 一个张量的维度数和每个维度的大小,例如一个 10x10 的图片在保存时直接保存为一个包含 100 个元素的序列,在读取后就可以使用 reshape 将其从 1x100 变换为 10x10。示例如下:

代码输入:

生成一个包含整数 0~11 的向量

x = np.arange(12)

print(x)

结果输出: [ 0 1 2 3 4 5 6 7 8 9 10 11]

查看数组大小

x.shape

结果输出: (12,)

将 x 转换成二维矩阵,其中矩阵的第一个维度为 1

x = x.reshape(1,12)

print(x)

结果输出: [[ 0, 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11]]

查看数组大小

x.shape

结果输出: (1, 12)

将 x 转换 3x4 的矩阵

x = x.reshape(3,4)

print(x)

结果输出: [[ 0, 1, 2, 3], [ 4, 5, 6, 7],[ 8, 9, 10, 11]]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋小童

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值