SKlearn之决策树

决策树是一种非参数的监督学习方法。

模块:Sklearn.tree

sklearn建模的步骤:

1、选择并建立模型   例:clf = tree.DecisionTreeClassifier()

2、提供数据训练模型   例:clf = clf.fit(X_train,y_train)

3、获取需要的信息   例:result = clf.score(X_test,y_test)

 

分类树中的参数:

一、criterion

criterion是用来决定不纯度的计算方法,不纯度越低,拟合效果越好。

参数值:entropy(信息熵)、gini(基尼系数)

二、random_state

随机种子。在高维度时比较明显。

三、splitter

控制随机选项

参数值:best(优先选择重要的特征进行分支)、random(分支时更随机,可以防止过拟合)

下面是一些用于剪枝的参数:

四、max_depth

剪枝,限制最大深度,在高纬度低样本量时有效。可以防止过拟合。

五、min_samples_leaf

当分出的子节点小于min_sample_leafs就直接剪枝,不会往下分。当数值设置的过小时,会过拟合;过大的话,会阻止学习。

六、min_samples_split

一个节点必须包含min_samples_split的训练样本才会被分支

七、max_features

限制分支时考虑的特征个数,超过限制个数就会被舍弃

八、min_impurity_decrease

信息增益是指子节点与父节点的信息熵的差值。这个参数用于设定,当信息增益小于阈值时,就不再分支。

 

以红酒数据为例:

from sklearn import tree
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split

由于数据集是一个字典,可以通过 ”.键“ 的方式将数据打印出来:

数据的标签可以分为0、1、2 。所以他是一个三分类的数据。

接下来做一个最简单的分类:

#将数据集分为训练集和测试集
x_train,x_test,y_train,y_test = train_test_split(wine.data,wine.target,test_size=0.3)

clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=0,splitter='best')
clf = clf.fit(x_train,y_train)
score = clf.score(x_test,y_test)
print(score)

这样就得出了一个90%正确率的模型

 

然后可以查看哪一个元素在决策树中比较重要:

print([*zip(feature_name,clf.feature_importances_)])

就可以得到:

 

当我们尝试了几种剪枝方法,但效果不明显时,可以做超参数的学习曲线。

例如,我们改变最大层数:

test = []
for i in range(10):
    clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=0,splitter='best',max_depth=i+1)
    clf = clf.fit(x_train,y_train)
    score = clf.score(x_test,y_test)
    test.append(score)
plt.plot(range(1,11),test,'r')
plt.legend()
plt.show()

就可以绘制出这样的线段:

所以可以了解到当max_depth=2的时候是最好的。

 

接下来再介绍两个重要的结果接口:

clf.apply(x_test)   他会返回测试样本所在的叶子节点

clf.predict(x_test)   他会返回测试样本的结果

clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=0,splitter='best',max_depth=2)
clf = clf.fit(x_train,y_train)
score = clf.score(x_test,y_test)
print(x_test[0])
print(clf.predict(x_test[0].reshape(1,-1)))

由于sklearn不接受一维的特征,所以用reshape(1,-1)来增维,也可以直接在外面加 [  ] 

sklearn是一个Python的机器学习库,里面包含了很多机器学习算法的实现。其中,决策树是一个常用的分类和回归算法,在sklearn中有完整的决策树实现。 使用sklearn决策树案例的步骤如下: 1. 导入必要的库和数据集:首先需要导入sklearn库中的decisiontree模块,以及其他可能需要的库,如numpy和pandas。然后,将准备好的数据集加载到程序中。 2. 数据预处理:对于决策树模型,数据需要进行一定的预处理。这包括对数据进行缺失值处理、特征选择、特征缩放等。可以使用sklearn中的preprocessing模块提供的函数进行处理。 3. 构建决策树模型:使用sklearn中的DecisionTreeClassifier来构建决策树模型。可以设置树的深度、最小叶节点数、最小拆分样本数等参数。 4. 拟合模型:将准备好的训练数据传入fit函数进行模型拟合。模型会根据传入的数据进行训练,学习到数据的特征和标签之间的关系。 5. 预测和评估:使用训练好的模型对测试数据进行预测,得到预测结果。可以使用sklearn中的predict函数来进行预测。然后,通过与真实标签进行比较,可以使用准确性、精确度、召回率等指标评估模型的性能。 6. 可视化决策树:如果希望可视化决策树,可以使用sklearn中的export_graphviz函数生成Graphviz格式的决策树图形,然后使用Graphviz库进行展示。 总结来说,使用sklearn决策树案例需要导入库和数据集、预处理数据、构建模型、拟合模型、预测和评估模型,最后可以选择性地对决策树进行可视化。通过这个过程,我们可以使用决策树算法来解决分类和回归问题,并对模型性能进行评估和可视化展示。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值