决策树是一种非参数的监督学习方法。
模块:Sklearn.tree
sklearn建模的步骤:
1、选择并建立模型 例:clf = tree.DecisionTreeClassifier()
2、提供数据训练模型 例:clf = clf.fit(X_train,y_train)
3、获取需要的信息 例:result = clf.score(X_test,y_test)
分类树中的参数:
一、criterion
criterion是用来决定不纯度的计算方法,不纯度越低,拟合效果越好。
参数值:entropy(信息熵)、gini(基尼系数)
二、random_state
随机种子。在高维度时比较明显。
三、splitter
控制随机选项
参数值:best(优先选择重要的特征进行分支)、random(分支时更随机,可以防止过拟合)
下面是一些用于剪枝的参数:
四、max_depth
剪枝,限制最大深度,在高纬度低样本量时有效。可以防止过拟合。
五、min_samples_leaf
当分出的子节点小于min_sample_leafs就直接剪枝,不会往下分。当数值设置的过小时,会过拟合;过大的话,会阻止学习。
六、min_samples_split
一个节点必须包含min_samples_split的训练样本才会被分支
七、max_features
限制分支时考虑的特征个数,超过限制个数就会被舍弃
八、min_impurity_decrease
信息增益是指子节点与父节点的信息熵的差值。这个参数用于设定,当信息增益小于阈值时,就不再分支。
以红酒数据为例:
from sklearn import tree
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
由于数据集是一个字典,可以通过 ”.键“ 的方式将数据打印出来:
数据的标签可以分为0、1、2 。所以他是一个三分类的数据。
接下来做一个最简单的分类:
#将数据集分为训练集和测试集
x_train,x_test,y_train,y_test = train_test_split(wine.data,wine.target,test_size=0.3)
clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=0,splitter='best')
clf = clf.fit(x_train,y_train)
score = clf.score(x_test,y_test)
print(score)
这样就得出了一个90%正确率的模型
然后可以查看哪一个元素在决策树中比较重要:
print([*zip(feature_name,clf.feature_importances_)])
就可以得到:
当我们尝试了几种剪枝方法,但效果不明显时,可以做超参数的学习曲线。
例如,我们改变最大层数:
test = []
for i in range(10):
clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=0,splitter='best',max_depth=i+1)
clf = clf.fit(x_train,y_train)
score = clf.score(x_test,y_test)
test.append(score)
plt.plot(range(1,11),test,'r')
plt.legend()
plt.show()
就可以绘制出这样的线段:
所以可以了解到当max_depth=2的时候是最好的。
接下来再介绍两个重要的结果接口:
clf.apply(x_test) 他会返回测试样本所在的叶子节点
clf.predict(x_test) 他会返回测试样本的结果
clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=0,splitter='best',max_depth=2)
clf = clf.fit(x_train,y_train)
score = clf.score(x_test,y_test)
print(x_test[0])
print(clf.predict(x_test[0].reshape(1,-1)))
由于sklearn不接受一维的特征,所以用reshape(1,-1)来增维,也可以直接在外面加 [ ]