DeepSeek 指南:90% 的人都不知道的10个技巧

大家好,我是汤师爷~

最近,DeepSeek这款AI工具爆火国内外。

虽然许多人都开始尝试使用它,但有人吐槽说,没想象中那么牛。

其实问题不在工具,很多人的使用姿势就搞错了,用大炮打蚊子,白白浪费DeepSeek的强大功能。

接下来,我将为大家分享10个实用技巧,你会发现DeepSeek远比想象中更强大。

1 DeepSeek的三种模式

DeepSeek有三大适用模式:基础模型(V3)、深度思考(R1)、联网搜索。

1.1. 基础模型(V3)



图片



基础模型(V3)是DeepSeek的标配,没有勾选默认就是基础模型。V3版自去年12月升级后,性能大幅提升,堪比业内顶尖模型如GPT-4、Claude-3.5等。

它的作用相当简单,回答日常的百科类问题,帮助用户快速获取信息。

不管是查询常见知识、处理简单的文本生成任务,V3都能迅速给出答案。它的优点就是高效、便捷,几乎没有什么门槛,适用于大部分场景。

尤其是在用户并不要求复杂推理、深度分析的情况下,V3就显得尤为合适。比如你只想问一个简单的问题,或者需要一个快速的解答,V3足够应付。简单、直接,是它的最大特点。

1.2. 深度思考(R1)

R1作为DeepSeek的深度推理模型,专门用来解决那些需要复杂推理和深度思考的问题。它处理的任务更具挑战性,比如数理逻辑推理、编程代码分析等。

R1模型有660B的参数,并采用了后训练+RL强化学习方法,擅长从多个角度分析问题,并给出经过严密推理后的解答。

R1决定是一位专家,能够为你提供精确、深刻的推理和分析。因此,如果你的问题涉及到复杂的推理,R1便是不二的选择。

1.3. 联网搜索

联网搜索模式是DeepSeek的AI搜索功能,基于RAG(检索增强生成),这一模式让DeepSeek不仅能依赖它自己的知识库,还能根据互联网实时搜索相关内容来回答问题。

换句话说,联网搜索不仅让模型能够回答2024年7月以后的问题,还可以利用网络上的最新信息来补充自己的回答。



2 如何对标其他模型?

DeepSeek的三个核心模式,能够与chatGPT对标,为我们提供更清晰的选择。

2.1. V3对标GPT-4o

DeepSeek的V3模型堪比GPT-4o,二者的设计理念和应用场景非常相似。V3采用了Moe架构,拥有671B的参数量,能够在百科知识领域提供快速响应。

2.2. R1对标o1

R1是DeepSeek的深度推理模型,和OpenAI的o1模型非常类似。二者都在处理推理、深度思考以及复杂逻辑问题时,展现出了非凡的能力。

R1采用了660B的参数,并且在强化学习和后训练方面表现出色。R1更擅长逻辑推理和复杂问题的解答,在这一点上,R1已经超越了o1模型。



3 知识库的更新时间

目前,DeepSeek的预训练数据已经更新到2024年7月。

但对于之后的新闻或技术动态,DeepSeek的联网搜索模式就显得尤为重要,它能够根据网络实时获取最新信息,弥补知识库的空白。



4 “小学生”沟通技巧

与DeepSeek对话时,有时我们可能觉得AI的回答过于抽象。

这其实源于传统AI模型过于注重结构化表达,结果都是“八股文”的回答,我们可以借助DeepSeek的“小学生”沟通技巧。

可以给它一个提示:“我是一名小学生,请用小学生能听懂的话解释什么是大模型。”



图片

图片

5 通过持续追问,获取详细答案

运用持续追问的技巧,能够帮你快速搞清楚一个复杂问题,大致步骤如下:

•提出一个概括性的问题

•基于回答内容进行深入追问

•继续挖掘具体细节

•将对话信息整理成清单格式

例如,我先问DeepSeek:“如何写好提示词?”



图片



对于如何提供上下文,我还是不明白,我可以继续追问DeepSeek。



图片

图片

最后我让DeepSeek把对话整理成详细的清单格式。



图片



6 活用联网搜索

联网搜索是DeepSeek的一大亮点,它让模型在回答时不仅仅依赖预训练数据,还能实时从网络上检索最新的信息。

你可以问到2024年7月以后发生的事件,或者某些新兴技术领域的问题,DeepSeek都能通过联网搜索为你提供更准确、及时的回答。

例如,你问DeepSeek:“2025年春晚有哪些节目?”它可以在网络上找到最相关的资料,并结合大语言模型的能力生成确的回答。

但是,最近DeepSeek受国外网络攻击,联网搜索暂不可用了,尴尬~



图片



7 上传附件功能

除了联网搜索,DeepSeek还支持上传附件功能,这为用户提供了更多个性化的体验。

通过上传附件,你可以将自己的私密资料、知识库、甚至是一些需要深度推理的材料直接交给DeepSeek,让它基于这些专有的文件进行分析和推理。



图片



上传附件最多支持50个文件,每个文件最大100MB,数据量较大的文件,DeepSeek也能处理自如。

10 R1的三个开放特性

对于深度思考(R1)模型,DeepSeek做到了三个重要的开放特性,让R1不仅仅是一个“黑盒”模型,它的思维过程、训练技术和模型参数都是透明开放的。

10.1. 思维链全开放

R1的思维链是完全开放的,用户可以看到模型进行推理时的每一步逻辑。

这不仅是一个回答,而是一个完整的思考过程。通过这种方式,用户能获得最终答案,还能够理解AI是如何得出这个结论的。



图片



10.2. 训练技术全部公开

DeepSeek采用了RL(强化学习)技术,通过极少的标注数据提高了推理能力。

所有的训练技术,包括模型的后训练过程和数据增强方法,都是公开的。

这让广大网友都能深入理解模型的训练过程,并且可以根据需要进行调整和优化。

10.3. 开源模型

DeepSeek还将R1的部分模型进行开源。虽然R1模型本身的参数高达660B,通常只有大公司才能使用,但DeepSeek也为社区提供了更小的开源模型,让更多的开发者和研究者可以使用。

最小的模型只有1.5B参数,适合个人开发者进行实验和开发。

这格局太顶了,帮助全球的开发者共同推动AI的发展。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值