HMM——后向算法

后向算法是隐马尔科夫模型(HMM)中用于评估识别问题的一种方法,从后往前计算后向变量。文章详细介绍了后向变量的概念,并通过归纳过程展示了如何在不同时间步计算这些变量。此外,还提供了时间复杂度分析和一个简单的程序例证来说明后向算法的工作原理。最后,指出前后向概率的关系,即在已知所有观测的情况下,第t时刻处于第i个状态的概率等于该时刻的前向概率乘以后向概率。
摘要由CSDN通过智能技术生成

后向算法

    对于HMM的评估识别问题,利用动态规划可以用前向算法,从前到后算出前向变量;也可以采用后向算法,从后到前算出后向变量。

先介绍后向变量βt(i):给定模型μ=(A,B,π),并且在时间 时刻t状态为si 的前提下,输出序列为Ot+1Ot+2...OT的概率,即

             βt(i)=P(Ot+1Ot+2...OT|qt=si,μ)

归纳过程

   假设仍然有3个状态

   当t=T时,按照定义:时间t时刻状态qT输出为OT+1......的概率,从T+1开始的输出是不存在的(因为T时刻是终止终止状态),即T之后是空,是个必然事件,因此βt(i)=1,1≤1≤N

    当t=T-1时,

       βT-1(i)=P(OT|qT-1=si,μ) = ai1*b1(OT)*βT(1)+ai2*b2(OT)*βT(2)  + ai3*b3(OT)*βT(3)

 ......

     当t=1时,

   β1(1)=P(O2O3...OT|q2=s1,μ)= a11*b1(O2)*β2(1) + a12*b2(O2)*β2(2)+ a13*b3(O2)*β2(3)

   β1(2)=P(O2O3...OT|q2=s1,μ)= a21*b1(O2)*β2(1) + a22*b2(O2)*β2(2)+ a23*b3(O2)*β2(3)

    β1(3)=P(O2O3...OT|q2=s1,μ) = a31*b1(O2)*β2(1)+ a32*b2(O2)*β2(2) + a33*b3(O2)*β2(3)

   P(O1O2...OT|μ)=  

                          = 

                          =

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值