后向算法
对于HMM的评估识别问题,利用动态规划可以用前向算法,从前到后算出前向变量;也可以采用后向算法,从后到前算出后向变量。
先介绍后向变量βt(i):给定模型μ=(A,B,π),并且在时间 时刻t状态为si 的前提下,输出序列为Ot+1Ot+2...OT的概率,即
βt(i)=P(Ot+1Ot+2...OT|qt=si,μ)
归纳过程
假设仍然有3个状态
当t=T时,按照定义:时间t时刻状态qT输出为OT+1......的概率,从T+1开始的输出是不存在的(因为T时刻是终止终止状态),即T之后是空,是个必然事件,因此βt(i)=1,1≤1≤N
当t=T-1时,
βT-1(i)=P(OT|qT-1=si,μ) = ai1*b1(OT)*βT(1)+ai2*b2(OT)*βT(2) + ai3*b3(OT)*βT(3)
......
当t=1时,
β1(1)=P(O2O3...OT|q2=s1,μ)= a11*b1(O2)*β2(1) + a12*b2(O2)*β2(2)+ a13*b3(O2)*β2(3)
β1(2)=P(O2O3...OT|q2=s1,μ)= a21*b1(O2)*β2(1) + a22*b2(O2)*β2(2)+ a23*b3(O2)*β2(3)
β1(3)=P(O2O3...OT|q2=s1,μ) = a31*b1(O2)*β2(1)+ a32*b2(O2)*β2(2) + a33*b3(O2)*β2(3)
P(O1O2...OT|μ)=
=
=
<