本推文分析了人工智能顶刊《Artificial Intelligence》(简称AIJ)2025年3月发布的11篇论文。本期AIJ涵盖了AI可解释性、人机交互、视频目标分割与跟踪等热门方向,呈现出当前AI研究正在向“可解释、可交互、可推理”的方向发展,希望本文能为人工智能领域的研究人员提供一些有价值的参考。
本文由龚裕涛撰写,审校为王一鸣。
1 期刊简介
AIJ是人工智能领域的国际顶级学术期刊,创刊于1970年,由Elsevier出版集团发行。作为人工智能领域的标杆性刊物,该期刊长期致力于发表人工智能基础理论、方法创新和前沿应用的高水平研究成果。该期刊涵盖人工智能中广泛领域的投稿,包括但不限于以下方向:人工智能与认知、自动推理与推断、案例推理、常识推理、计算机视觉、约束处理、人工智能伦理、启发式搜索、人机交互、智能机器人、知识表示、机器学习、多智能体系统、自然语言处理、规划与行动以及不确定性下的推理。该期刊具有很高的影响力,其近年的影响因子(IF)变化趋势如图1所示。
期刊链接:https://www.sciencedirect.com/journal/artificial-intelligence
图1 期刊近年IF趋势图
2 热点分析
本文对《Artificial Intelligence》2025年3月收录的11篇论文进行了深入分析。表1汇总了所有论文的标题、关键词以及研究主题,旨在为人工智能领域的研究人员提供追踪热点与研究方向上的参考。
表1 2025年3月AIJ收录的论文
标题 | 关键词 | 研究主题 |
Argumentative review aggregation and dialogical explanations | 论证;论证挖掘;评论聚合;对话式交互;对话式解释 | 提出论证对话代理(ADA),通过NLP与知识图谱结构化评论特征(如酒店卫生/电影剧情),解决现有汇总系统过度简化及缺乏解释的问题。 |
A semantic framework for neurosymbolic computation | 神经符号整合;推理;神经编码;神经网络;符号逻辑; | 建立数学框架严格编码符号规则到神经网络,提升AI可靠性(如医疗/法律场景)与可解释性(如贷款决策逻辑) |
Athanor: Local search over abstract constrain specifications | / | 新型求解器直接操作高阶变量类型,实现实时优化(如医疗决策、交通调度),支持快速响应与解释生成。 |
Explainable AI and stakes in medicine: A user study | 可解释人工智能;以人为本的可解释人工智能;可解释机器学习;用户研究;人机交互;因果推理 | 通过484人实验验证:医疗AI的解释方式(风险等级/来源透明度)显著影响用户信任,破解"黑箱"困境。 |
Learning a fast 3D spectral approach to object segmentation and tracking over space and time | 视频目标分割;目标跟踪;谱聚类;幂迭代;三维卷积;图优化 | SFSeg++方法将视频像素建模为时空网络,同步解决物体分割与跟踪,保持跨帧形状连贯性。 |
Maximum Likelihood Evidential Reasoning | 证据推理;贝叶斯推断;不完美数据的似然分析;Dempster原则;可解释机器学习;可解释人工智能 | MAKER框架处理不完美数据(如冲突医疗报告),输出带可信度的决策(如"糖尿病概率75%,可信度70%")。 |
TTVAE: Transformer-based generative modeling for tabular data generation | 生成式AI;表格数据;Transformer模型;隐空间插值 | 结合Transformer与VAE,自动学习特征关系,如年龄和收入之间的关系,生成逼真表格数据 |
CureGraph: Contrastive multi-modal graph representation learning for urban living circle health profiling and prediction | 多模态表征学习;图神经网络;对比学习;空间建模;健康预测 | 整合城市多源数据,用图对比学习预测社区慢性病风险,辅助健康城市规划 |
Explain it as simple as possible, but no simpler -- Explanation via model simplification for addressing inferential gap | 计划解释;抽象化;对比解释 | 通过逐步简化随机规划问题,如机器人任务失败原因,生成人类可理解的解释,比如机器人缺打蛋器无法成功制作蛋糕而非复杂代码出错。 |
Beyond incompatibility: Trade-offs between mutually exclusive fairness criteria in machine learning and law | 机器学习公平性;不相容的公平性定义;最优传输;欧盟人工智能法案 | 提出FAIM算法解决公平标准互斥问题,如校准公平vs误判率平衡,数学证明冲突不可避免。 |
A simple proof-theoretic characterization of stable models: Reduction to difference logic and experiments | 逻辑编程;稳定模型;答案集编程;差分逻辑 | 通过引入差分逻辑和SCC分析,提出了一种更高效、更简洁的稳定模型求解方法。这种方法不仅在理论上有重要价值,还在实际应用中展现出不错的表现,特别是在处理复杂规则和大规模数据时 |
为了更清晰地分析研究热点,本文对本期11篇论文出现的高频关键词进行了统计,结果如表2所示。从表2的统计结果来看,“可解释”出现了6次,表明当前AI研究特别关注算法决策过程的透明化和可理解性,尤其是在医疗诊断、金融风控等高风险领域,急需解决AI的黑箱问题。“学习”出现5次,反映出机器学习方法在各类应用中的核心地位。“推理”和“逻辑”各出现4次,显示出形式化推理方法在AI系统中的持续重要性。“神经网络”出现3次,体现了神经网络仍是当前研究的重要工具。值得注意的是,“交互”同样出现3次,说明人机交互在AI系统开发中受到越来越多的关注。
表2论文关键词统计
关键词 | 出现次数 |
可解释 | 6 |
学习 | 5 |
推理 | 4 |
逻辑 | 4 |
神经网络 | 3 |
交互 | 3 |
3 总结
本文总结出的研究热点反映出当前AI研究正在向“可解释、可交互、可推理”的方向发展。人工智能方法的可解释性一直是研究人员重点关注的问题,也是当前的研究热点之一。如何让人工智能更加友好和易用,则必须关注人工智能的交互性能的提升。采用人工智能解决推理的问题,具有较大的技术难度,也是研究者当前需要重点解决的问题。上述几个研究热点都值得读者重点关注。