什么是机器学习,为什么它如此重要?

机器学习是人工智能的重要组成部分,通过算法从数据中发现模式。它分为监督和无监督学习,涉及数据预处理、特征工程、模型选择和超参数优化等步骤。深度学习和神经网络是其关键技术,广泛应用于推荐系统、搜索引擎、语音助理等领域。自动化机器学习(AutoML)降低了对专业数据科学家的依赖,加速了模型构建,并提高了效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随着近来数据可用性,算力和新算法的快速发展,机器学习已逐渐成为实现人工智能(AI)的关键方法之一。
机器学习是计算机科学更广泛领域中人工智能的一个子集。它用计算机和算法从“数据”中学习并发现“模式和洞察”,因为在许多情况下,“模式和洞察”就隐藏在“数据”之中。随着时代发展,从业务流程中积累的数据对人类来说理解起来可能非常复杂。然而算法却能够比人更快、更准确地从数据中发掘出“模式和洞察”。
机器学习分为两类技术:监督学习和无监督学习。监督学习是指在已知的输入和输出数据上训练模型以使其可以预测未来的输出数据,无监督学习则是在输入数据中发现隐藏模式或内在结构。
机器学习的过程本质上是非常简单的:找到模式、应用模式, 这很大程度上要归功于Geoffrey Hinton在1986年的一项发明,今天我们称他为深度学习之父。
什么是深度学习?
深度学习是一种“深层”神经网络,它包括许多层神经元和海量数据。 这种先进的机器学习方式可以解决复杂问题,非线性问题 ,并且很多AI突破都与之相关,例如自然语言处理(NLP),个人数字助理和自动驾驶汽车。
什么是神经网络?
神经网络,又称人工神经网络,是一种模拟神经元在人脑中工作方式的机器学习。 该计算机程序使用多个节点(或“神经元”)并行操作,可以用于学习事物、识别模式以及模拟人类决策。
机器学习如何工作?
机器学习通常包含4个关键步骤:

  1. 数据预处理:范围缩放,缺失值插补
  2. 特征工程:特征提取,特征编码
  3. 模型选择
  4. 超参数优化
    机器学习工程师或数据科学家在为特定任务构建机器学习流程时必须仔细设计每个步骤, 这
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值