多维随机变量及其分布 概率论复习笔记

多维随机变量及其分布

1.二维随机变量及其分布

假设E是随机试验,Ω是样本空间,X、Y是Ω的两个变量;(X,Y)就叫做二维随机变量或二维随机向量。X、Y来自同一个样本空间。

联合分布函数
F ( x , y ) = P ( X ≤ x , Y ≤ y ) F(x,y)=P(X≤x,Y≤y) F(x,y)=P(Xx,Yy)
几何意义表示对立体曲线的体积

即F(x,y)表示求(x,y)左下方的面积。

性质
(1)0≤F(x,y) ≤1
(2)F(x,y) 不减,例如:y固定,x1<x2,F(x1,y)<F(x2,y)
(3)F(-∞,y)=F(x,-∞)=F(-∞,-∞)=0,F(+∞,+∞)=1
(4)F(x,y)分别关于x和y右连续
(5)
对于 x 1 < x 2 , y 1 < y 2 P ( x 1 < X ≤ x 2 , y 1 < Y ≤ y 2 ) = F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) 对于x_1<x_2,y_1<y_2\\ P(x_1<X≤x_2,y_1<Y≤y_2) = F(x_2,y_2) - F(x_2,y_1)-F(x_1,y_2)+F(x_1,y_1) 对于x1<x2y1<y2P(x1<Xx2y1<Yy2)=F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)

边缘分布

X的边缘分布:
F X ( x ) = P ( X ≤ x ) = F ( x , + ∞ ) = P ( X ≤ x , Y < + ∞ ) F_X(x) = P(X≤x) = F(x,+∞) = P(X≤x,Y<+∞) FX(x)=P(Xx)=F(x,+)=P(Xx,Y<+)
这表示在所有可能的 Y 值上,X 取值 x 的概率总和。从图形曲线上理解就是求小于x的所有点的面积,Y随意取值。

Y的边缘分布:
F Y ( y ) = P ( Y ≤ y ) = F ( + ∞ , y ) = P ( X < + ∞ , Y ≤ y ) F_Y(y) = P(Y≤y) = F(+∞,y) = P(X<+∞,Y≤y) FY(y)=P(Yy)=F(+,y)=P(X<+,Yy)
表示在所有可能的 X 值上,Y 取值 y的概率总和。从图形曲线上理解就是求小于y的所有点的面积,X随意取值。

2.二维离散型随机变量的联合分布和边缘分布

联合概率质量函数 P(X=x,Y=y) 描述了随机变量 X 和 Y 同时取特定值 x 和y 的概率。联合PMF满足以下性质:

  1. 非负性:对于所有的 x 和 y,有 P(X=x,Y=y)≥0。

  2. 归一性:所有可能的 x 和 y 值的概率之和等于1,即:
    ∑ x ∑ y P ( X = x , Y = y ) = 1 ∑_x∑_yP(X=x,Y=y)=1 xyP(X=x,Y=y)=1

概率分布表解释:

假设由一个概率分布表:

X\Y 1 2 3
1 0 1/2 1/8
2 1/8 1/8 1/8

非负性表示分布表中的所有概率都要大于等于0。例如:
P ( X = 1 , Y = 2 ) = 1 2 ≥ 0 P ( X = 2 , Y = 2 ) = 1 8 ≥ 0 P(X=1,Y=2)=\dfrac{1}{2}\geq 0\\ P(X=2,Y=2)=\dfrac{1}{8}\geq 0 P(X=1,Y=2)=210P(X=2,Y=2)=810
归一性表示分布表中所有概率之和等于1。

联合分布函数
F ( x , y ) = P ( X ≤ x , Y ≤ y ) = ∑ x i ≤ x ∑ y j ≤ y P ( X = x , Y = y ) F(x,y)=P(X\leq x,Y\leq y)=∑_{x_i\leq x}∑_{y_j\leq y}P(X=x,Y=y) F(x,y)=P(Xx,Yy)=xixyjyP(X=x,Y=y)
概率分布表解释:

F(x,y)的值就是在分布表中找到对应的(x,y)对应的位置,然后将其左上角的概率相加。

例如:
F ( 1 , 2 ) = P ( X ≤ 1 , Y ≤ 2 ) = P ( 1 , 1 ) + P ( 1 , 2 ) = 0 + 1 2 = 1 2 F ( 2 , 2 ) = P ( X ≤ 2 , Y ≤ 2 ) = P ( 1 , 1 ) + P ( 1 , 2 ) + P ( 2 , 1 ) + P ( 2 , 2 ) = 0 + 1 2 + 1 8 + 1 8 = 3 4 F(1,2)=P(X\leq 1,Y\leq 2)=P(1,1)+P(1,2)=0+\dfrac{1}{2}=\dfrac{1}{2}\\ F(2,2)=P(X\leq 2,Y\leq 2)=P(1,1)+P(1,2)+P(2,1)+P(2,2)=0+\dfrac{1}{2}+\dfrac{1}{8}+\dfrac{1}{8}=\dfrac{3}{4} F(1,2)=P(X1,Y2)=P(1,1)+P(1,2)=0+21=21F(2,2)=P(X2,Y2)=P(1,1)+P(1,2)+P(2,1)+P(2,2)=0+21+81+81=43
边缘分布

边缘概率质量函数可以通过对联合PMF的适当求和得到。

  1. 边缘PMF
    P X ( x ) P_X(x) PX(x)
    :表示随机变量 X 取特定值 x 的概率,不考虑 Y的值。计算方法为:
    P X ( x ) = ∑ y P ( X = x , Y = y ) P_X(x)=∑_yP(X=x,Y=y) PX(x)=yP(X=x,Y=y)
    其中,求和是对所有可能的 y 值进行。

  2. 边缘PMF
    P Y ( y ) P_Y(y) PY(y)
    :表示随机变量 Y取特定值 y 的概率,不考虑 X 的值。计算方法为:
    P Y ( y ) = ∑ x P ( X = x , Y = y ) P_Y(y)=∑_xP(X=x,Y=y) PY(y)=xP(X=x,Y=y)
    其中,求和是对所有可能的 x 值进行。

概率分布表解释:

对行求和,得到对X的边缘分布。

对列求和,得到对Y的边缘分布。

例如:

X\Y 1 2 3
1 0 1/2 1/8
2 1/8 1/8 1/8

求X的边缘分布:

X 1 2
P 5/8 3/8

当X=1时,求该行的概率之和,即:0+1/2+1/8=5/8

以此类推。

求Y的边缘分布:

Y 1 2 3
P 1/8 5/8 1/4

当Y=1时,求该列的概率之和,即0+1/8=1/8

以此类推。

3.二维连续随机变量的联合密度和边缘密度函数

对于二维连续随机变量 X 和 Y,其分布函数为:
F ( x , y ) = P ( X ≤ x , Y ≤ y ) = ∫ − ∞ x ∫ − ∞ y f ( s , t ) d s d t F(x,y) = P(X≤x,Y≤y) = ∫_{-∞}^x∫_{-∞}^yf(s,t)dsdt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值