不定积分问题:1/x^3+1的不定积分求法

首先要知道a^3+b^3=(a+b)(a^2-ab+b^2)

则1/x^3+1=1/(x+1)(x^2-x+1),到这儿应该把分母乘积的关系分开,

令1/x^3+1=1/(x+1)(x^2-x+1)=A/(x+1)+Bx+C/x^2-x+1

通过上式,两边相等解出A=1/3   B=负1/3  C=2/3

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAYjM0NDk0NjkyMg==,size_20,color_FFFFFF,t_70,g_se,x_16

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值