slam---非线性优化

一、最速下降法

1.1 基本原理

        梯度下降法和最速下降法的区别是是否需要计算步长。步长的求法,对步长求导等于零,求出步长。直线模拟会有锯齿震荡。

        负梯度方向,为下降最快的方向,如下图。

        梯度的求法,实际就是求骗导。

1.2 求步长

        步长的求法:两种方法,一种是直接对步长求导,令导数为零,求出步长,如下面的例子。

        另一种,是进行二阶泰勒展开近似,然后对步长求导,令导数为零,求出步长。

1.3 收敛性

        锯齿震荡现象,相邻两次方向相互垂直。原因如下:求步长时,令导数为零,有如下公式推导。

二、牛顿法

注意:求x的变化量(x-xk)时,是对x变化量求导。

三、高斯牛顿法

        高斯牛顿法的内容来自高斯牛顿法详解_gauss-newton算法步骤-CSDN博客

四、LM法及狗腿法

    关于LM、LMF及狗腿法,请参阅如下博客,其讲的比较清晰。【算法系列】非线性最小二乘-列文伯格马夸尔和狗腿算法 - 豆奶特 (dounaite.com)

六、预条件共轭梯度法

6.1 预条件共轭梯度法

共轭梯度法的收敛性分析:
        设A为n x n对称正定矩阵,其最大与最小特征值分别为λ1,λn。求解A x = b 的共轭梯度法。当
λ1​>>λn​时,共轭梯度法的收敛效率会变得比较低。

预处理的基本思想:
预处理被称为PCG方法(preconditioned conjugated gradient method)既然共轭梯度法的收敛速度取决于系数矩阵的特征值,那么我们可以将A x = b 转化为等价的B x = c,使得B x = c在与A x = b同解的前提下,而B的最大、最小的特征值之比远小于A的最大、最小的特征值之比。从而再次运用共轭梯度法求解方程组能够达到提高收敛速度的效果。

如下为不完全因式分解预条件共轭梯度法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值