slam 滤波

一、卡尔曼滤波

二、误差卡尔曼滤波

原文地址:Error-State Kalman Filter理解与梗概推导 - 知乎 (zhihu.com)

三、扩展卡尔曼滤波

        卡尔曼滤波与扩展卡尔曼滤波公式对比如下。

        扩展卡尔曼滤波,用一阶泰勒展开,来对非线性系统进行线性化。Fk和Hk都为雅克比矩阵。

        详细的讲解,请参考如下博文扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)_ekf滤波实例-CSDN博客

四、无迹卡尔曼滤波

        UKF生成了一些点,来近似非线性。由这些点来决定实际x和P的取值范围。
        UT变换:假设一个非线性系统y = f ( x ),其中x 为n 维状态向量,并已知其平均值为x ‾ ,方差为P x ,则可以经过UT变换构造2 n + 1 个Sigma点x i  ,同时构造x i 相应的权值W i ,进而得到y 的统计特性(均值和方差)。 有点类似于概率论里已知x的均值和方差,求y = f ( x ) )的y 的均值和方差。

UKF的算法步骤如下:


         以上的内容都来自于如下博客。

        无迹(损)卡尔曼滤波(UKF)理论讲解与实例_无迹卡尔曼滤波估算例子-CSDN博客

        此博客讲的比较详细,且以slam实际例子进行了示范。

五、粒子滤波

        5.1 算法思想

        粒子滤波(Particle Filter)不需要对状态空间进行区间划分。粒子滤波算法采用很多粒子对置信度进行近似,每个粒子都是对t时刻机器人实际状态的一个猜测。越接近t时刻的Ground Truth状态描述的粒子,权重越高。粒子更新的过程类似于达尔文的自然选择(Natural Selection)机制,与当前Sensor测量状态越匹配的粒子,有更大的机会生存下来,与Sensor测量结果不符的粒子会被淘汰掉,最终粒子都会集中在正确的状态附近。

        5.2 自动驾驶实例

粒子滤波(Particle Filter)的主要步骤如下:

1)Initialisation Step:在初始化步骤中,根据GPS坐标输入估算位置,估算位置是存在噪声的,但是可以提供一个范围约束。

2)Prediction Step:在Prediction过程中,对所有粒子(Particles)增加车辆的控制输入(速度、角速度等),预测所有粒子的下一步位置。

3)Update Step:在Update过程中,根据地图中的Landmark位置和对应的测量距离来更新所有粒子(Particles)的权重。

4)Resample Step:根据粒子(Particles)的权重,对所有粒子(Particles)进行重采样,权重越高的粒子有更大的概率生存下来,权重越小的例子生存下来的概率就越低,从而达到优胜劣汰的目的。

原文地址:自动驾驶定位算法(十三)-粒子滤波(Particle Filter) - 知乎 (zhihu.com)

  • 16
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值