小米AIGC产品经理上岸面经(已拿offer)

背景:

🌟学历:本科

🌟专业:电子信息科学与技术

🌟性别:女

🌟年龄:29

🌟婚育:已婚未育

🌟工作经验:5年

🌟职业情况:金融产品经理,想要转AIGC产品经理

自认为产品经理相关的技能是完全没问题的,最开始没有AI相关的项目经验,投递了50多家一个面试都没拿到,我过段暂停了简历投递,因为我发现AI项目经验就是敲门砖,如果没有的话投递再多都是在浪费机会。

后来补充了两个AIGC的项目:AI智能催收系统和AI智能投顾系统,才逐步开始有了面试。

小米这个岗位是智能座舱产品经理,主要负责多轮对话机器人,跟我之前的项目经验整体比较匹配,技术框架都是很类似的,所以很荣幸能拿到这个offer,薪资涨幅26%

自己本身也是米粉,很看好小米汽车的发展,后面还有一个度小满的面试,估计我会主动放弃后续面试流程了。先简单分享一些求职面经,等正式转正之后再来给大家分享工作体验,大家加油呀~~

❤️目前我已经整理了AI面试高频100题的答案,欢迎大家把面试中遇到的问题发到评论区,我后续继续补充,还没有开始面试的小伙伴可以添加下方私信我要答案~

✅小米AIGC产品面经-业务面


👉1、自我介绍

❤️2、简单介绍上家公司日常工作内容,大概都做哪些事情?

🚀3、在这两个AIGC项目里,有哪些事情是你做了之后对产品效果的提升是比较明显的?

👉4、你的数据分析能力怎么样,熟悉哪些数据分析方法

❤️5、有没有使用过小爱同学?都是在哪些场景下会找小爱同学?最高频场景是哪个?

👉6、感觉当前小爱同学的回复准确率如何?如果让你提高准确率,你会怎么做?

❤️7、你们公司这个AI智能催收系统是怎么做的呢?相比于人工效果如何?平均对话轮次是多少?

👉8、你认为在金融业务中还有哪些场景也可以使用AI降本增效?你们公司目前有这方面的布局吗?为什么?

🚀9、除了B端产品,你自己平时有没有C端相关AI产品的使用经验?

✅小米AIGC产品面经-总监面


🚀1、自我介绍

👉2、对于新能源智能座舱中的车载语音,你有哪些了解?

❤️3、之前有去试驾或者体验过理想、蔚来、特斯拉等品牌的车载语音系统吗?都有哪些核心功能?

👉4、如果让你制定小米汽车智能语音系统的评价标准,会从哪几个维度出发?

❤️5、在车载空间,如何判断用户是否在和智能语音系统说话?也即是如何进行语义识别?

🚀7、你认为多音区锁定功能的用户价值大不大?为什么?

👉8、除了多音区锁定、语义识别,你认为车载智能语音控制系统,还需要有哪些核心能力?

**思路:**我的答案是连续对话、可见即可说、对话速度,面试前咨询过老薛,压中了。

✅小米AIGC产品面经-HR面


❤️1、为什么想做AI产品经理?

👉2、上一段工作中最有成就感的事情?遇到最大的困难?

🚀3、对智能座舱车载语音产品经理的了解有多少?

🚀4、用过哪些AIGC产品?应用场景有哪些?

👉5、跨团队协作中遇到过什么问题,怎么解决

❤️6、未来职业规划

🚀7、对小米汽车了解多少?

👉8、如何看待未来新能源汽车的发展

❤️9、离职原因?现在在职还是已经离职?到岗时间

🌿除了社招小米的面经之外,结合近期学生求职商汤、科大讯飞、百度、腾讯、蚂蚁金服等公司的面经,给大家分享一下AIGC面试都问哪些问题(持续更新中)❤️❤️

1、如果客户对你这个大模型生成的文案不满意,你要怎么处理?(百度)

2、这个AIGC项目上线了吗,当时为什么要做这个项目呢?(科大讯飞)

3、你认为 AIGC/AI 产品未来的发展方向是?(科大讯飞)

4、你做的这个 AIGC聊天项目使用的Zui核心的算法是什么?这种算法有哪些优缺点?(商汤)

5、你做 AIGC产品有哪些优劣势?(蚂蚁金服)

6、你对aigc的理解,两句话概括(百度)

7、目前市面上的aigc 平台你做的竞品,有哪些收获,比较各平台的特点(百度)

8、Aigc 在金融领域主要做什么?(蚂蚁金服)

9、你这个 AIGC项目用到什么算法?有没有其他更好的方法,这种方法有没有试过?(腾讯)

10、针对你这个AIGC项目上线之后,有哪些“量化”的数据成果?(腾讯)

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
<think>好的,我现在需要帮用户整理关于小米汽车C++相关的试经验。根据用户提供的参考引用,有三个引用内容需要结合进去。首先,引用[1]提到准备智能驾驶算法方向的试项目,比如自动驾驶模拟器,这可能涉及到C++在算法实现中的应用。引用[2]提到了OTA互测试工程师的职位,虽然主要是测试,但可能需要C++的基础。引用[3]则是编程题示例,涉及算法和数据结构,这对于C++岗位的试尤为重要。 用户的需求是了解小米汽车C++试经验,所以需要综合这些信息。首先,我需要确定小米汽车C++岗位可能考察的重点,包括技术试内容、编程题类型以及项目经验要求。然后,结合引用中的内容,比如项目建议和编程题例子,给出具体的准备建议。 接下来,我应该分步骤整理回答。首先,技术试部分可能涉及C++基础、智能驾驶相关技术、算法和数据结构。然后,编程题方,引用[3]提供了一个装箱问题的例子,需要详细解析这类题目的解题思路。项目经验部分,引用[1]建议的自动驾驶模拟器项目可以作为参考,说明如何结合C++进行开发。此外,引用[2]提到的测试经验虽然属于不同职位,但可能对理解团队协作有帮助。 同时,需要确保回答结构清晰,符合用户要求的层次结构,比如分点列出技术重点、编程题解析、项目准备等。此外,还要注意用户提到的LaTeX格式要求,确保数学表达式正确使用$...$和$$...$$。例如,在算法复杂度分析时,使用$O(n \log n)$这样的格式。 可能的问题点包括:是否所有引用内容都相关?引用[2]关于测试工程师的信息是否适用于C++开发岗位?可能需要说明虽然主要职位不同,但测试经验可能对理解整个开发流程有帮助,尤其是OTA升级相关的部分,可能涉及C++代码的测试。 最后,生成相关问题部分需要围绕用户可能进一步询问的内容,比如具体编程题解析、项目细节或算法优化方法。确保问题与之前的回答内容紧密相关,帮助用户深入探索。</think>### 小米汽车 C++ 试经验整理 #### 1. **技术试重点** - **C++ 基础** - 必考内容:多态实现机制(虚函数表)、智能指针(`shared_ptr`/`unique_ptr`)、STL容器底层原理(如`vector`扩容机制、红黑树在`map`中的应用)、移动语义与完美转发[^1]。 - 示例问题: *如何用 C++11 实现线程安全的单例模式?* *`std::vector`的`push_back`时间复杂度分析?* - **智能驾驶相关技术** - 涉及算法:路径规划(A*、Dijkstra)、传感器数据处理(点云滤波、卡尔曼滤波)、实时系统设计(优先级调度)。 - 数学基础:线性代数(矩阵变换)、微积分(运动学模型),例如车辆运动方程可表示为: $$s(t) = s_0 + v_0 t + \frac{1}{2} a t^2$$ - **算法与数据结构** - 高频题目:动态规划(背包问题)、图算法(拓扑排序)、二叉树遍历(非递归实现)[^3]。 #### 2. **编程题解析(参考引用[3])** **题目示例**:装箱问题 **输入**:箱子容量 $N$,玩具数量 $n$,填充物数量 $c$,玩具大小数组 $a[1..n]$ **目标**:判断是否能用玩具和填充物(单个大小为1)恰好填满箱子。 **解题思路**: 1. **动态规划**:定义状态 $dp[i][j]$ 表示前 $i$ 个玩具使用 $j$ 个填充物时的最大填充值。 2. **状态转移**: $$dp[i][j] = \max(dp[i-1][j], dp[i-1][j - a[i]] + a[i])$$ 约束条件:$j \geq a[i]$ 3. **判断条件**:存在 $j \leq c$ 使得 $dp[n][j] + (c - j) \geq N$ ```cpp bool canFill(int N, int n, int c, vector<int>& a) { vector<int> dp(c + 1, 0); for (int num : a) { for (int j = c; j >= num; j--) { dp[j] = max(dp[j], dp[j - num] + num); } } return (dp[c] + (c - dp[c]) >= N); } ``` #### 3. **项目经验建议(参考引用[1])** - **自动驾驶模拟器开发** - 技术栈:C++17、ROS2(机器人操作系统)、Gazebo 仿真环境。 - 核心功能: - 车辆动力学模型:使用欧拉法数值积分实现,如: $$v_{t+1} = v_t + a \cdot \Delta t$$ - 传感器模拟(激光雷达点云生成) - 成果指标:将路径规划算法延迟从 $50ms$ 优化至 $20ms$(通过引入内存池管理点云数据)。 #### 4. **试流程特点** - **交叉提问**:例如在解释虚函数时,可能追问:“虚函数表在多重继承中的内存布局?” - **场景设计**:如“设计一个支持高并发的车辆状态上报系统”(需结合生产者-消费者模型、无锁队列优化)[^2]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值