抖音电商如何用扣子 Coze 打造 AI 客服?

在传统电商客服体系中,服务流程通常由智能客服系统与人工客服团队协同完成,并衍生出一系列前后端的配套服务。

尽管大模型已经诞生近两年半,目前 AI 客服大都还停留在 SOP 辅助模式或 Copilot 协作模式。

图片

“不配置就回复不了”、“机械式单轮问答”、“幻觉问题误导客户”、“无法识别判读意图,答非所问”等问题仍然普遍存在。

为了让 AI 客服更智能化,抖音电商客服团队基于扣子Coze 平台,提供了 Agent 模式下的全新解决方案,在 AI 客服场景构建了人机协作的新型服务范式。

图片

效率UP,扣子双场景助力客服

当前主流智能客服系统通常采用的服务流程为:用户自主查询→机器人应答→转接人工。

在电商领域,这种模式存在两个突出问题:一是高峰期咨询量激增时,用户排队等待时间过长,直接影响购物体验;二是人工客服成本耗费高,并且在处理大量重复性咨询时效率低下。抖音电商客服团队在大模型和 Agent 应用探索,主要体现在以下两个方面:

图片

  1. Agent 直接面客:由 Agent 智能客服提供对客服务。通过在扣子上搭建 Agent 智能体,结合过往对话过程中积累的各种常见问题和解决方案。

    不仅能更快地回答客户问题,还能越用越聪明,回答得越来越准,在部分场景上可以完全取代人工。

  2. Agent 回复+人工监管:更多情况下是以模型提供服务为主,真人客服对回复内容进行“监管”,在回复存在风险的情况下再进行人为干预。专门设计了一个评分标准「有效干预率」来评估模型能力和坐席干预的合理性,即用来判断 AI 回答得好不好,以及真人客服纠正得对不对。

这样既能保证服务质量,又能帮助 AI 不断进步。

图片

路径升级,快来 get 同款Agent!

在电商客服场景,抖音电商团队基于扣子做了许多有益实践,其中,售后客服这一场景的 Agent 实现了开源,在扣子平台的模板商店即可免费使用。

该模板可帮助处理物流、支付、售后问题问题,提供智能客服替代人工回复的搭建思路。企业或个人可以基于自身定制化需求,修改该 Agent 和工作流的各种设定。

图片

https://www.coze.cn/s/uM1e-yIzEzo/

图片

一键复制,即可 Get 抖音团队在用的同款 Agent!

该方案尝试将传统客服职能抽象为可数据化、智能化的服务主体,构建了一个能够自主执行服务流程的智能体系统。其具体实施路径包含以下两个关键步骤:

Step 1:解构客服服务流程

图片

Step 2:工作流架构抽离与设计

  1. 主流程:串联完整服务链路,判断会话基本面并路由至相应 Agent;

    图片

  2. Agen****t 节点:承接独立职能,如寒暄&收尾、问题澄清、场景路由、判断解决方案、协商&执行方案等;

    图片

  3. 配置节点:知识库配置、判断条件配置、LLM 模型参数配置等;

    图片

  4. 代码节点:IM通信、特征解析、实验参数获取等。

低代码+高智能,扣子让客服 Agent 更强大!

  1. 零配置自学习:开箱即用,无需复杂配置,具备自主学习优化能力;

  2. 精准智能应答:基于商品属性、历史对话等多维数据,精准识别用户意图,提供准确回复;

  3. 深度决策调度:通过多维度分析推理,支持复杂场景处理,实现多 Agent 智能协作;

  4. 情绪智能感知:实时识别用户情绪变化,提供及时安抚,优化服务体验;

  5. 智能对话引导:支持多轮自然交互,主动追踪需求变化,提供深度解决方案。

    图片

除了抖音电商团队,不少企业也基于扣子搭建自己的 Agent 客服系统。例如,探域科技就基于扣子平台定制化了自身的电商智能体解决方案。快速定位知识库中的商品特性、活动信息、历史对话等,生成个性化话术增加商品吸引力和促转化。在多轮对话中,客服 Agent 也能结合店铺邮费/运费险/优惠券话术策略,打消消费者疑虑,建立信任并促进决策。

图片

基于扣子搭建的电商智能体👆

图片

图片

客户应用展示:客服Agent执行进店欢迎-接待买家咨询-针对买家身高体重推荐尺码—导购上身效果—完成交易的整个流程

无论技术如何进步,服务的本质始终是解决用户的实际问题。扣子期待与更多企业一同探索 AI + 电商场景的可能性,邀你一起探索更多的落地场景!

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
### 关于“扣子 Coze”与 IT 的相关性分析 如果将“扣子 Coze”作为一个品牌或者产品的名称来讨论其与 IT 领域的相关性,则可以从以下几个方面展开: #### 品牌命名的语义关联 在 IT 行业中,许多品牌的命名往往具有一定的技术背景意义或者是对未来科技趋势的一种隐喻。然而,“扣子 Coze”的字面含义并未直接指向任何已知的技术概念或行业术语[^1]。因此,在缺乏具体上下文的情况下,该名称与 IT 技术之间的显性联系较弱。 #### 可能存在的间接联系 尽管如此,仍可能存在一些潜在的连接方式: - 如果 “Coze” 是某个特定软件平台、硬件设备或是服务解决方案的名字,并且通过营销手段赋予了它象征协作(co-work) 或者紧密集成(close integration) 的寓意,则可以视为一种抽象意义上的IT应用。 - 此外,考虑到全球化背景下语言转换带来的多样性解释,“coze”或许是对某些编程理念、算法模型甚至是网络协议的形象化表达形式之一。 综上所述,在没有更多关于此名字背后实际所指对象的信息前,单纯从文字本身判断,“扣子 Coze”同信息技术领域之间确实表现出较低程度的相关度。 ```python # 示例代码用于展示如何评估字符串相似性的简单方法 from difflib import SequenceMatcher def compare_strings(str1, str2): ratio = SequenceMatcher(None, str1.lower(), str2.lower()).ratio() return round(ratio * 100, 2) brand_name = "扣子 Coze" it_terms = ["software", "hardware", "networking"] similarities = {term: compare_strings(brand_name, term) for term in it_terms} print(similarities) ``` 上述脚本展示了利用 Python 中 `difflib` 库计算不同词语间匹配百分比的一个例子。虽然这种方法并不能确切证明两者是否有实质上的关系,但它提供了一种量化比较的基础工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值