课程链接:https://edu.csdn.net/course/detail/38827
口罩佩戴检测可以应用于公共场所的安全管理、疫情防控监测等多种场景。YOLOv8是前沿的目标检测技术,它基于先前 YOLO 版本在目标检测任务上的成功,进一步提升性能和灵活性。
本课程使用YOLOv8实现人脸口罩佩戴的实时检测。课程提供超万张已标注人脸口罩数据集。本课程会讲述本项目超万张人脸口罩数据集的制作方法,包括使用labelImg以及使用Python代码对第三方数据集进行清洗。训练后的YOLOv8可对真实场景下人脸口罩佩戴进行高精度实时检测。课程提供PySide6开发的可视化演示界面,可实时检测图像、视频、摄像头和流媒体(http/rtsp)中的口罩佩戴。
本课程分别在Windows和Ubuntu系统上做项目演示。包括:安装软件环境(Nvidia显卡驱动、cuda和cudnn)、安装PyTorch、安装YOLOv8、准备数据集(自动划分训练集和验证集)、修改配置文件、训练数据集(合适的命令参数选择)、测试训练出的网络模型和性能统计、项目可视化演示界面。