YOLOv5(PyTorch)目标检测:原理与源码解析

本课程聚焦于YOLOv5这一高效目标检测模型,详细解读其PyTorch实现原理,并通过PyCharm进行源码逐行分析。课程包含YOLOv5s网络架构图,同时提供实战课程,如训练自定义数据集、FlaskWeb部署及TensorRT加速。适合进阶学习者深入理解模型并应用于实际项目。
摘要由CSDN通过智能技术生成

PyTorch版YOLOv5目标检测:原理与源码解析

课程链接:https://edu.csdn.net/course/detail/31428

Linux创始人Linus Torvalds有一句名言:Talk is cheap. Show me the code. 冗谈不够,放码过来!代码阅读是从基础到提高的必由之路。

YOLOv5是最近推出的轻量且高性能的实时目标检测方法。YOLOv5使用PyTorch实现,含有很多业界前沿和常用的技巧,可以作为很好的代码阅读案例,让我们深入探究其实现原理,其中不少知识点的代码可以作为相关项目的借鉴。

本课程将详细解析YOLOv5的实现原理和源码,对关键代码使用PyCharm的debug模式逐行分析解读。 本课程将提供注释后的YOLOv5的源码程序文件。

课程内容

版权申明:下图是白勇老师所绘制的YOLOv5s网络架构图,如有引用和转载请链接本博客网址。

网络架构

pycharm调试

【相关课程】

本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括:

《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》

Ubuntu系统 https://edu.csdn.net/course/detail/30793

Windows系统 https://edu.csdn.net/course/detail/30923

《YOLOv5(PyTorch)目标检测:原理与源码解析》https://edu.csdn.net/course/detail/31428

《YOLOv5(PyTorch)目标检测实战:Flask Web部署》https://edu.csdn.net/course/detail/31087

《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》https://edu.csdn.net/course/detail/32303

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bai666ai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值