Pytorch添加自定义算子之(6)-最远点采样自定义算子添加至pytorch中使用并导出onnx模型

本文详细介绍了如何在PyTorch中添加自定义的最远点采样操作,并将其整合到网络中。通过配置头文件、cpp源码、GPU支持文件及Python打包脚本,成功编译执行后,进一步将PyTorch模型导出为ONNX格式,便于部署和使用。
摘要由CSDN通过智能技术生成

参考:Pytorch2Onnxruntime的github地址,忘记了具体网址了

一、头文件配置

命名为:sampling_gpu.h

#ifndef _SAMPLING_GPU_H
#define _SAMPLING_GPU_H

#include <ATen/cuda/CUDAContext.h>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

誓天断发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值