Pytorch添加自定义算子之(7)-使用onnxruntime自定义GPU与CPU最远点采样算子加载onnx模型

本文详细介绍了如何在Pytorch中添加自定义算子,并利用onnxruntime在GPU和CPU上进行最远点采样操作。从下载安装onnxruntime到配置CMakeLists.txt,再到编写cuda_ops和sampling文件,最后通过查看GPU及CPU的模型输出结果,验证了自定义算子的成功应用。然而,在过程中遇到了`libcufft.so.10`库找不到的问题。
摘要由CSDN通过智能技术生成

一、下载安装onnxruntime

参考:
https://gitcode.net/mirrors/microsoft/onnxruntime/-/releases?spm=1033.2243.3001.5877

二、配置CMakeLists.txt

cmake_minimum_required(VERSION 3.10)
project (customop)
add_definitions(-std=c++
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

誓天断发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值