数据集预处理,划分为测试数据集合验证数据集

该博客介绍了如何将数据集划分为训练集和测试集,通过随机选取80%的数据用于训练数学模型,剩下的20%用于验证模型的准确性。数据集包含多个特征,经过处理后,数据以新的形式呈现,并给出了使用Python进行数据划分的示例。
摘要由CSDN通过智能技术生成

在一个数据集中随机选出80%的记录作为训练数据集,训练得到相应的数学模型之后,将剩余的20%的记录作为验证,测试模型的准确性。

原有数据集形式:

1::1193::5::978300760
1::661::3::978302109
1::914::3::978301968
1::3408::4::978300275
1::2355::5::978824291
1::1197::3::978302268
1::1287::5::978302039
1::2804::5::978300719
1::594::4::978302268
1::919::4::978301368


其中[0]-[3]分别代表不同的特征
处理后得到的数据集

3418 869 4 967398834
1545 1073 3 974744490
2851 2572 5 972506781
2068 1198 3 974658346
1031 3633 4 974999133
5555 1073 3 959550355
587 3566 1 975946900
1125 3301 2 988697984
4091 1772 1 965425356
2096 3114 5 974653564
5888 1220 5 957480240
710 93 2 975570015


python代码如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值