时基电路 555 是在同一硅片上,集成了模拟功能与逻辑功能。
它设计新颖,构思奇巧,用途广泛,倍受电子专业设计人员和电子爱好者的青睐,人们将其戏称为伟大的小IC。
它的应用,那是很多的,本文着重介绍它在多谐振荡器方面的改进与应用。
引脚功能简介
555 常见的是 DIP8 封装,共有 8 个引脚。
电源:
--引脚1:接地。
--引脚8:电源VDD,4.5-18V。
输出:
--引脚3:输出端OUT,输出为数字量。逻辑0:0V,逻辑1:VDD。输出电流:225mA (max)。上升/下降时间:100 ns。
--引脚7:放电端DIS,当OUT输出为“0”时,引脚7即对地导通,否则处于开路状态。
输入:
--引脚2:置位端TR,当该端的电压低于1/3*VDD时,可使OUT输出“1”。该端允许外加电压范围为0~VDD。
--引脚6:复位端TH,当该端的电压高于2/3*VDD时,可使OUT输出“0”。该端允许外加电压范围为0~VDD。
控制:
--引脚5:控制电压端,上述的门限电压2/3*VDD,可以在该引脚外接。一般该引脚用0.01uF电容接地。
--引脚4:强制复位端,输入低电平时,输出端将为“0”,放电端对地导通。一般工作时,应在该端输入高电平。
555 构成多谐振荡器
常见的电路如下:
电路中,把置位端TR和复位端TH,连接到了一起。
上电,置位端TR和复位端TH的电压低于1/3*VDD,OUT(图中为Q)端输出“1”;
电源通过R2、R1,对电容器C2充电,从1/3*VDD充到2/3*VDD,约用时:0.693(R1 + R2)×C2;
此时,置位端TR和复位端TH的电压高于2/3*VDD,OUT(图中为Q)端输出“0”;
然后,电容器C2通过R1经DIS端放电,从2/3*VDD放到1/3*VDD,约用时:0.693(R1)×C2;
周而复始。
OUT端输出方波的周期:T = 0.693×(2R1 + R2)×C2。
仿真运行截图如下:
电路图中,R1 = R2 = 5k,C2 = 10uF,可以算出:
充电时间(正半周)= 0.693 * 10 * 10^3 * 10 * 10^(-6) = 6.93 * 10^(-3) = 6.93ms
放电时间(负半周)= 0.693 * 05 * 10^3 * 10 * 10^(-6) = 3.47 * 10^(-3) = 3.47ms
完整周期 T = 10.40ms。
看看波形图中的时间,与理论计算完全吻合。
正负半周相同的多谐振荡器
从上图中可以看出,输出波形的正、负半周的时间,是不相同的。
为了使输出波形为方波,有很多人提出了各种改进电路。
但是,各种电路都是够复杂的,并且充、放电一般都是不同的途径,这样,在理论上就不能保证正、负半周的时间相同。
做而论道经过理论探索和实验,设计了下面的电路:
在这个电路中,充电时,没有使用电源VDD,而是利用OUT端输出的高电平,来完成对C2的充电。
OUT输出高电平的时候,能够输出的最大电流可达200mA,而对5k的R1电阻来说,最大也仅仅需要1mA的充电电流,所以不会有任何不良后果。
在这个电路中,放电时,也是利用OUT输出的低电平,来完成对C2的放电过程的,电流也远远小于OUT端的容许电流。
仿真运行截图如下:
从图中可以清楚的看到,正负半周的周期相同。
用肉眼观察,恐怕还是难以令人信服,那么从理论上,这充放电的时间相同,怎么证明呢?
充放电,都是通过同一个电阻R1,使用了同一个电容C2,用的同一个引脚OUT。
计算过程如下:
充电时间(正半周)= 0.693 * 5 * 10^3 * 10 * 10^(-6) = 3.47 * 10^(-3) = 3.47ms
放电时间(负半周)= 0.693 * 5 * 10^3 * 10 * 10^(-6) = 3.47 * 10^(-3) = 3.47ms
完整周期 T = 0.693 * 2 * R1 * C2 = 6.93ms。
另外,也可以并联上DIS引脚,利用DIS导通来放电。这时从示波器上看波形,看不出变化。
电容器容量的数值与周期的数值的关系
仔细看看周期的公式: T = 0.693 * 2 * R1 * C2
如果适当的选择R1的数值,就可以把 0.693 消掉,将会有:T = C2。
即 R1 应该满足:0.693 * 2 * R1 = 1,可解出: R1 = 720 欧姆。
那么,如果 C2 为 10uF,即有:
T = 0.693 * 2 * 720 * 10 * 10^(-6) = 10 * 10^(-3) = 10ms
看出来了吗? C2 = 10uF,就有 T = 10ms !
就是说,只要选用 R1 = 720,那么,电容是多少 uF,周期就是多少 ms ! 这是多么的简洁 !
看看下面的仿真图片:
R1 = 720,电容是 10 uF,周期就是 10 ms。
电容器容量的测量
按照上述分析,选用 R1 = 720,电容量的 uF 数值,就可以等于周期的 ms 数值。
如果容量很大、或很小,那么可以换用不同的电阻,如 72,7200,这就仍然可以使周期在 ms 这个档次上,而当换算成电容量的时候,则应该乘以 10,或 0.1。
利用555测量电容器容量的电路如下:
图片链接:http://xiangce.baidu.com/picture/detail/8564b930942456f2a4e6f61ac47fbf389845eaeb