基于状态匹配的多核RBF模型

本文是我参加2017年DDCLS(数据驱动控制、学习和系统)会议汇报内容整理而来,详细内容请参看发表的会议论文“An Adaptive Multi-Kernel RBF Model Using State Matching”

在这里插入图片描述

1 背景

众所周知,系统辨识问题存在于很多领域,例如金融领域中研究股票的走势,气象领域中预测降雨可能性,交通运输领域中预测道路拥堵

system-identificaiton-problems

然而,用过去研究的方法仍然有很多问题难以解决
现实的系统几乎都是非线性和时变的,采用带有固定结构和参数的静态模型往往难以求解
为了应对这样的问题,我们可以采用结构可变的模型或者直接采用组合模型,这里我们选择后者

2 RBF神经网络

下图是典型的RBF神经网络结构
RBF的全称是Radial Biasi Function(径向基函数),它可以完成输入层和隐层之间的高维映射
正交最小二乘可以简称为OLS,采用OLS和前进法相结合,可以获得稀疏的模型结构,且能减少复杂计算量
在隐层和输出层之间的参数确定采用广义逆的方法。

RBF-structure

3 多核模型

在RBF模型的基础上,针对时变系统问题,我们提出了基于状态匹配算法的多核RBF模型,简称为SMMK-RBF
算法包括离线和在线过程
首先,在离线过程中,我们生成数个RBF子模型,根据之前介绍的OLS模型获得稀疏解构,用历史数据来初始化子模型权重其次,在线过程中,采用状态匹配的方法来调整权重,并整合子模型的结果获得最终输出

multi-kernel-structure

下面详细介绍状态匹配算法的细节
首先,在所有过去状态,我们都记录其最优的核;然后,针对当前状态,我们运用加权欧式距离的方法做多次匹配
基于这两点,我们可以整合多个核获得最优结果
这个过程就像是一般的加权投票系统,并且它是有效的

state-matching

4 仿真实验

接下来介绍模型的仿真实验
首先是选择典型的时变时间序列:Mackey-Glass时间序列
通过设置模型参数并随机生成初始长度的序列,之后采用Runge-Kutta法来生成完整序列
下图展示SMMK-RBF模型的预测效果
图中蓝实线和红虚线分别表示系统输出和模型预测输出,两条线相似验证了模型的有效性
Mackey-Glass-time-series

为了比较我们提出的模型和其他模型,我们做了更多的数值实验
所有的实际时间序列数据从UCI Machine Learning Repository获得。我们定义了均方差根作为评估模型的衡量标准
其他对比选用固定参数的多核RBF模型、有300个节点的极限学习机、K近邻模型和OLS-RBF模型。从仿真结果可以看出,SMMK-RBF有最佳的效果

real-time-series

5 讨论

为了保证模型的鲁棒性,在每时刻,我们是调整所有核的权重并带有遗忘因子,而不是直接转换到最优核
然而,由于我们仅仅是关注于已存在的系统动态特性,所以未能覆盖到不可预见的特性
在以后的工作中,我们将分析不同核函数在特定应用场合的适用性,并建立混合模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值