The Representer Theorem——表示定理

节选自Learning with Kernels4.2节

\Omega是一个严格单调递增函数,c是任意损失函数。则每一个正则化风险(regularized risk)

c\left ( \left ( x_{1},y_{1} ,f\left (x_{1} \right ), ... ,\left ( x_{m},y_{m} ,f\left (x_{m} \right )\right ) \right )+\Omega \left ( \left \| f \right \|_{\mathcal{H}} \right )   的最小值满足下面的表达式

f\left ( x \right )=\sum^{m}_{i=1}\alpha {_{i}}k\left ( x{_{i}},x \right )

损失函数c最原始的形式其实是均方损失函数

c\left ( \left ( x_{1},y_{1} ,f\left (x_{1} \right ), ... ,\left ( x_{m},y_{m} ,f\left (x_{m} \right )\right ) \right )

=\frac{1}{m}\sum_{i=1}^{m}\left ( y{_{i}}-f\left ( x{_{i}} \right ) \right )^{​{2}}

证明:我们可以将任何f\in \mathcal{H}分解为各个核函数分量形式与正交补的和

f\left ( x \right )=f{_{||}}\left ( x \right )+f{_{\perp }}\left ( x \right ) =\sum_{i=1}^{m}\alpha _{i}k\left ( x_{i},x \right )+f{_{\perp }}\left ( x \right )

这里的\alpha _{i}\in \mathbb{R}, f\in \mathcal{H}


且 \left \langle f _{\perp },k\left ( x_{i},\cdot \right ) \rangle=0

f\left ( x _{j}\right )=\left \langle f\left ( \cdot \right ),k\left ( x_{j} ,\cdot \right ) \right \rangle=\sum_{i=1}^{m}\alpha _{i}k\left ( x_{i},x_{j} \right )+\left \langle f_{\perp } \left ( \cdot \right ),k\left ( x_{j} ,\cdot \right )\right \rangle_{\mathcal{H}}=\sum_{i=1}^{m}\alpha _{i}k\left ( x_{i},x_{j} \right )

因为

\Omega \left ( \left \| f \right \| _{\mathcal{H}}\right )=\bar{\Omega}\left ( \left \| \sum_{i}^{m}\alpha _{i}k\left ( x_{i} ,\cdot \right )\right \| _{\mathcal{H}}^{2}+\left \| f_{\perp } \right \|_{\mathcal{H}}^{2}\right )\geqslant \bar{\Omega}\left ( \left \| \sum_{i}^{m}\alpha _{i}k\left ( x_{i} ,\cdot \right )\right \| _{\mathcal{H}}^{2}\right )

对于任何固定的\alpha _{i}\in \mathbb{R},风险函数在f _{\perp }=0时被最小化,该定理成立。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值