(二十七)张量表示定理 —— Cauchy 基本表示定理

1. 与证明相关的引理

引理 若向量组 { v ⃗ 1 , v ⃗ 2 , … , v ⃗ m } 、 { u ⃗ 1 , u ⃗ 2 , … , u ⃗ m } ( u ⃗ i , v ⃗ i ∈ R n ) \{\vec{v}_1,\vec{v}_2,\dots,\vec{v}_m\}、\{\vec{u}_1,\vec{u}_2,\dots,\vec{u}_m\}(\vec{u}_i,\vec{v}_i\in R^n) {v 1,v 2,,v m}{u 1,u 2,,u m}(u i,v iRn) 之间满足:
u ⃗ i ⋅ u ⃗ j = v ⃗ i ⋅ v ⃗ j ( i , j = 1 , 2 , … , m ) \vec{u}_i\cdot\vec{u}_j=\vec{v}_i\cdot\vec{v}_j\quad(i,j=1,2,\dots,m) u iu j=v iv j(i,j=1,2,,m)
则有:

(1) 若 { v ⃗ 1 , v ⃗ 2 , … , v ⃗ m } \{\vec{v}_1,\vec{v}_2,\dots,\vec{v}_m\} {v 1,v 2,,v m} 的极大线性无关组为:
{ v ⃗ l 1 , v ⃗ l 2 , … , v ⃗ l k }  其中, l 1 , l 2 , … , l k ∈ { 1 , 2 , … , m } ; k = r a n k ( { v ⃗ i } ) \{\vec{v}_{l_1},\vec{v}_{l_2},\dots,\vec{v}_{l_k}\}\ 其中,l_1,l_2,\dots,l_k\in\{1,2,\dots,m\};k=rank(\{\vec{v}_i\}) {v l1,v l2,,v lk} 其中,l1,l2,,lk{1,2,,m};k=rank({v i})
那么,对应的
{ u ⃗ l 1 , u ⃗ l 2 , … , u ⃗ l k } \{\vec{u}_{l_1},\vec{u}_{l_2},\dots,\vec{u}_{l_k}\} {u l1,u l2,,u lk}
{ u ⃗ 1 , u ⃗ 2 , … , u ⃗ m } \{\vec{u}_1,\vec{u}_2,\dots,\vec{u}_m\} {u 1,u 2,,u m} 的极大线性无关组。

(2) ∃ Q ∈ O 3 , s . t .   v ⃗ i = u ⃗ i ⋅ Q ( i = 1 , 2 , … , m ) \exists \bold Q\in\mathcal{O}_3,s.t. \ \vec{v}_i=\vec{u}_i\cdot\bold{Q}\quad(i=1,2,\dots,m) QO3s.t. v i=u iQ(i=1,2,,m)
证明如下:

(1) 先证明 { u ⃗ l 1 , u ⃗ l 2 , … , u ⃗ l k } \{\vec{u}_{l_1},\vec{u}_{l_2},\dots,\vec{u}_{l_k}\} {u l1,u l2,,u lk} 线性无关,令
a l 1 u ⃗ l 1 + a l 2 u ⃗ l 2 + ⋯ + a l k u ⃗ l k = 0 a_{l_1}\vec{u}_{l_1}+a_{l_2}\vec{u}_{l_2}+\dots+a_{l_k}\vec{u}_{l_k}=0 al1u l1+al2u l2++alku lk=0
那么有:
{ ( a l 1 u ⃗ l 1 + a l 2 u ⃗ l 2 + ⋯ + a l k u ⃗ l k ) ⋅ ( a l 1 u ⃗ l 1 ) = ( a l 1 v ⃗ l 1 + a l 2 v ⃗ l 2 + ⋯ + a l k v ⃗ l k ) ⋅ ( a l 1 v ⃗ l 1 ) = 0 ( a l 1 u ⃗ l 1 + a l 2 u ⃗ l 2 + ⋯ + a l k u ⃗ l k ) ⋅ ( a l 2 u ⃗ l 2 ) = ( a l 1 v ⃗ l 1 + a l 2 v ⃗ l 2 + ⋯ + a l k v ⃗ l k ) ⋅ ( a l 2 v ⃗ l 2 ) = 0 … ( a l 1 u ⃗ l 1 + a l 2 u ⃗ l 2 + ⋯ + a l k u ⃗ l k ) ⋅ ( a l k u ⃗ l k ) = ( a l 1 v ⃗ l 1 + a l 2 v ⃗ l 2 + ⋯ + a l k v ⃗ l k ) ⋅ ( a l k v ⃗ l k ) = 0 \begin{cases} (a_{l_1}\vec{u}_{l_1}+a_{l_2}\vec{u}_{l_2}+\dots+a_{l_k}\vec{u}_{l_k})\cdot(a_{l_1}\vec{u}_{l_1})=(a_{l_1}\vec{v}_{l_1}+a_{l_2}\vec{v}_{l_2}+\dots+a_{l_k}\vec{v}_{l_k})\cdot(a_{l_1}\vec{v}_{l_1})=0\\\\ (a_{l_1}\vec{u}_{l_1}+a_{l_2}\vec{u}_{l_2}+\dots+a_{l_k}\vec{u}_{l_k})\cdot(a_{l_2}\vec{u}_{l_2})=(a_{l_1}\vec{v}_{l_1}+a_{l_2}\vec{v}_{l_2}+\dots+a_{l_k}\vec{v}_{l_k})\cdot(a_{l_2}\vec{v}_{l_2})=0\\\\ \dots\\\\ (a_{l_1}\vec{u}_{l_1}+a_{l_2}\vec{u}_{l_2}+\dots+a_{l_k}\vec{u}_{l_k})\cdot(a_{l_k}\vec{u}_{l_k})=(a_{l_1}\vec{v}_{l_1}+a_{l_2}\vec{v}_{l_2}+\dots+a_{l_k}\vec{v}_{l_k})\cdot(a_{l_k}\vec{v}_{l_k})=0 \end{cases} (al1u l1+al2u l2++alku lk)(al1u l1)=(al1v l1+al2v l2++alkv lk)(al1v l1)=0(al1u l1+al2u l2++alku lk)(al2u l2)=(al1v l1+al2v l2++alkv lk)(al2v l2)=0(al1u l1+al2u l2++alku lk)(alku lk)=(al1v l1+al2v l2++alkv lk)(alkv lk)=0
相加得到:
( a l 1 v ⃗ l 1 + a l 2 v ⃗ l 2 + ⋯ + a l k v ⃗ l k ) ⋅ ( a l 1 v ⃗ l 1 + a l 2 v ⃗ l 2 + ⋯ + a l k v ⃗ l k ) = 0 (a_{l_1}\vec{v}_{l_1}+a_{l_2}\vec{v}_{l_2}+\dots+a_{l_k}\vec{v}_{l_k})\cdot(a_{l_1}\vec{v}_{l_1}+a_{l_2}\vec{v}_{l_2}+\dots+a_{l_k}\vec{v}_{l_k})=0 (al1v l1+al2v l2++alkv lk)(al1v l1+al2v l2++alkv lk)=0
即,
a l 1 v ⃗ l 1 + a l 2 v ⃗ l 2 + ⋯ + a l k v ⃗ l k = 0 a_{l_1}\vec{v}_{l_1}+a_{l_2}\vec{v}_{l_2}+\dots+a_{l_k}\vec{v}_{l_k}=0 al1v l1+al2v l2++alkv lk=0
由于 { v ⃗ l 1 , v ⃗ l 2 , … , v ⃗ l k } \{\vec{v}_{l_1},\vec{v}_{l_2},\dots,\vec{v}_{l_k}\} {v l1,v l2,,v lk} 线性无关,
a l 1 , a l 2 , … , a l k = 0 a_{l_1},a_{l_2},\dots,a_{l_k}=0 al1,al2,,alk=0
则, { u ⃗ l 1 , u ⃗ l 2 , … , u ⃗ l k } \{\vec{u}_{l_1},\vec{u}_{l_2},\dots,\vec{u}_{l_k}\} {u l1,u l2,,u lk} 线性无关。

采用反证法证明,线性无关的极大性,从向量组 { u ⃗ 1 , u ⃗ 2 , … , u ⃗ m } \{\vec{u}_1,\vec{u}_2,\dots,\vec{u}_m\} {u 1,u 2,,u m} 中任选一个除 { u ⃗ l 1 , u ⃗ l 2 , … , u ⃗ l k } \{\vec{u}_{l_1},\vec{u}_{l_2},\dots,\vec{u}_{l_k}\} {u l1,u l2,,u lk} 外的其它向量 u ⃗ s \vec{u}_s u s,构成新的向量组,若该向量组线性无关,即,当且仅当
b l 1 = b l 2 = ⋯ = b l k = c s = 0 b_{l_1}=b_{l_2}=\dots=b_{l_k}=c_s=0 bl1=bl2==blk=cs=0时,方有:
b l 1 u ⃗ l 1 + b l 2 u ⃗ l 2 + ⋯ + b l k u ⃗ l k + c s u ⃗ s = 0 ( ∗ ) b_{l_1}\vec{u}_{l_1}+b_{l_2}\vec{u}_{l_2}+\dots+b_{l_k}\vec{u}_{l_k}+c_s\vec{u}_s=0(*) bl1u l1+bl2u l2++blku lk+csu s=0
采用上文同样的处理方式,可由(*)得到:
b l 1 v ⃗ l 1 + b l 2 v ⃗ l 2 + ⋯ + b l k v ⃗ l k + c s v ⃗ s = 0 b_{l_1}\vec{v}_{l_1}+b_{l_2}\vec{v}_{l_2}+\dots+b_{l_k}\vec{v}_{l_k}+c_s\vec{v}_s=0 bl1v l1+bl2v l2++blkv lk+csv s=0
当且仅当 b l 1 = b l 2 = ⋯ = b l k = c s = 0 b_{l_1}=b_{l_2}=\dots=b_{l_k}=c_s=0 bl1=bl2==blk=cs=0 时成立。这与 { v ⃗ 1 , v ⃗ 2 , … , v ⃗ m } \{\vec{v}_1,\vec{v}_2,\dots,\vec{v}_m\} {v 1,v 2,,v m} 的极大线性无关组为 { v ⃗ l 1 , v ⃗ l 2 , … , v ⃗ l k } \{\vec{v}_{l_1},\vec{v}_{l_2},\dots,\vec{v}_{l_k}\} {v l1,v l2,,v lk} 相矛盾。从而说明了向量组 { u ⃗ l 1 , u ⃗ l 2 , … , u ⃗ l k } \{\vec{u}_{l_1},\vec{u}_{l_2},\dots,\vec{u}_{l_k}\} {u l1,u l2,,u lk} 线性无关的极大性,同时还可知道 两向量组中的序号相同的向量由各自极大线性无关组进行线性组合得到时,所采用的组合系数相同。(证毕)

(2) 若两个向量组的极大线性无关组间可通过正交变换一 一对应:
v ⃗ l i = u ⃗ l i ⋅ Q ( l 1 , … , l i , … , l k ∈ { 1 , 2 , … , m } ; k = r ( { v ⃗ i } ) ) \vec{v}_{l_i}=\vec{u}_{l_i}\cdot\bold Q\quad(l_1,\dots,l_i,\dots,l_k\in\{1,2,\dots,m\};k=r(\{\vec{v}_i\})) v li=u liQ(l1,,li,,lk{1,2,,m};k=r({v i}))
则,向量组外的其它向量也可通过正交变换一 一对应,即
v ⃗ s = ∑ i = 1 k a l i v ⃗ l i = ∑ p i = 1 k a l i u ⃗ l i ⋅ Q = u ⃗ s ⋅ Q ( s = 1 , 2 , … , m ) \vec{v}_s=\sum_{i=1}^ka_{l_i}\vec{v}_{l_i}=\sum_{pi=1}^ka_{l_i}\vec{u}_{l_i}\cdot\bold Q=\vec{u}_s\cdot\bold Q\quad(s=1,2,\dots,m) v s=i=1kaliv li=pi=1kaliu liQ=u sQ(s=1,2,,m)
说明要证明命题(2)只需要证明两个向量组的极大线性无关组可通过正交变换一 一 对应。

利用 Schmidt 正交化、归一化将极大线性无关组转换为标准正交基
{ u ⃗ l 1 ′ = u ⃗ l 1 u ⃗ l 2 ′ = u ⃗ l 2 − u ⃗ l 1 ′ ⋅ u ⃗ l 2 u ⃗ l 1 ′ ⋅ u ⃗ l 1 ′ u ⃗ l 1 ′ u ⃗ l 3 ′ = u ⃗ l 3 − u ⃗ l 1 ′ ⋅ u ⃗ l 3 u ⃗ l 1 ′ ⋅ u ⃗ l 1 ′ u ⃗ l 1 ′ − u ⃗ l 2 ′ ⋅ u ⃗ l 3 u ⃗ l 2 ′ ⋅ u ⃗ l 2 ′ u ⃗ l 2 ′ u ⃗ l 4 ′ = u ⃗ l 4 − u ⃗ l 1 ′ ⋅ u ⃗ l 4 u ⃗ l 1 ′ ⋅ u ⃗ l 1 ′ u ⃗ l 1 ′ − u ⃗ l 2 ′ ⋅ u ⃗ l 4 u ⃗ l 2 ′ ⋅ u ⃗ l 2 ′ u ⃗ l 2 ′ − u ⃗ l 3 ′ ⋅ u ⃗ l 4 u ⃗ l 3 ′ ⋅ u ⃗ l 3 ′ u ⃗ l 3 ′ … ⟹ { u ⃗ l 1 ′ ′ = u ⃗ l 1 ′ ∣ u ⃗ l 1 ′ ∣ u ⃗ l 2 ′ ′ = u ⃗ l 2 ′ ∣ u ⃗ l 2 ′ ∣ u ⃗ l 3 ′ ′ = u ⃗ l 3 ′ ∣ u ⃗ l 3 ′ ∣ u ⃗ l 4 ′ ′ = u ⃗ l 4 ′ ∣ u ⃗ l 4 ′ ∣ … \begin{cases} \vec{u}'_{l_1}=\vec{u}_{l_1}\\\\ \vec{u}'_{l_2}=\vec{u}_{l_2}-\dfrac{\vec{u}'_{l_1}\cdot\vec{u}_{l_2}}{\vec{u}'_{l_1}\cdot\vec{u}'_{l_1}}\vec{u}'_{l_1}\\\\ \vec{u}'_{l_3}=\vec{u}_{l_3}-\dfrac{\vec{u}'_{l_1}\cdot\vec{u}_{l_3}}{\vec{u}'_{l_1}\cdot\vec{u}'_{l_1}}\vec{u}'_{l_1}-\dfrac{\vec{u}'_{l_2}\cdot\vec{u}_{l_3}}{\vec{u}'_{l_2}\cdot\vec{u}'_{l_2}}\vec{u}'_{l_2}\\\\ \vec{u}'_{l_4}=\vec{u}_{l_4}-\dfrac{\vec{u}'_{l_1}\cdot\vec{u}_{l_4}}{\vec{u}'_{l_1}\cdot\vec{u}'_{l_1}}\vec{u}'_{l_1}-\dfrac{\vec{u}'_{l_2}\cdot\vec{u}_{l_4}}{\vec{u}'_{l_2}\cdot\vec{u}'_{l_2}}\vec{u}'_{l_2}-\dfrac{\vec{u}'_{l_3}\cdot\vec{u}_{l_4}}{\vec{u}'_{l_3}\cdot\vec{u}'_{l_3}}\vec{u}'_{l_3}\\\\ \dots \end{cases} \Longrightarrow \begin{cases} \vec{u}''_{l_1}=\dfrac{\vec{u}'_{l_1}}{|\vec{u}'_{l_1}|}\\\\ \vec{u}''_{l_2}=\dfrac{\vec{u}'_{l_2}}{|\vec{u}'_{l_2}|}\\\\ \vec{u}''_{l_3}=\dfrac{\vec{u}'_{l_3}}{|\vec{u}'_{l_3}|}\\\\ \vec{u}''_{l_4}=\dfrac{\vec{u}'_{l_4}}{|\vec{u}'_{l_4}|}\\\\ \dots \end{cases} u l1=u l1u l2=u l2u l1u l1u l1u l2u l1u l3=u l3u l1u l1u l1u l3u l1u l2u l2u l2u l3u l2u l4=u l4u l1u l1u l1u l4u l1u l2u l2u l2u l4u l2u l3u l3u l3u l4u l3 u l1′′=u l1u l1u l2′′=u l2u l2u l3′′=u l3u l3u l4′′=u l4u l4
向量组 { v ⃗ l i } ( i = 1 , 2 , … , k ) \{\vec{v}_{l_i}\}(i=1,2,\dots,k) {v li}(i=1,2,,k)可进行同样的运算。上述正交化过程可以写作:
u ⃗ l i ′ = T i u ⋅ u ⃗ l i ( i = 1 , 2 , … , k )   v ⃗ l i ′ = T i v ⋅ v ⃗ l i ( i = 1 , 2 , … , k ) \vec{u}'_{l_i}=\bold{T}_i^u\cdot\vec{u}_{l_i} \quad(i=1,2,\dots,k)\\\ \\ \vec{v}'_{l_i}=\bold{T}_i^v\cdot\vec{v}_{l_i}\quad(i=1,2,\dots,k) u li=Tiuu li(i=1,2,,k) v li=Tivv li(i=1,2,,k)
其中,
{ T 1 u = G T i u = G − ∑ j = 1 i − 1 u ⃗ l j ′ ⊗ u ⃗ l j ′ ∣ u ⃗ l j ′ ∣ ⋅ ∣ u ⃗ l j ′ ∣ = G − ∑ j = 1 i − 1 u ⃗ l j ′ ′ ⊗ u ⃗ l j ′ ′ ( i > 1 ) { T 1 v = G T i v = G − ∑ j = 1 i − 1 v ⃗ l j ′ ⊗ v ⃗ l j ′ ∣ v ⃗ l j ′ ∣ ⋅ ∣ v ⃗ l j ′ ∣ = G − ∑ j = 1 i − 1 v ⃗ l j ′ ′ ⊗ v ⃗ l j ′ ′ ( i > 1 ) \begin{aligned} &\begin{cases} \bold{T}_1^u=\bold G \\\\ \bold{T}_i^u =\bold{G}-\sum\limits_{j=1}^{i-1}\dfrac{\vec{u}'_{l_j}\otimes\vec{u}'_{l_j}}{|\vec{u}'_{l_j}|\cdot|\vec{u}'_{l_j}|} =\bold{G}-\sum\limits_{j=1}^{i-1}\vec{u}''_{l_j}\otimes\vec{u}''_{l_j}\quad(i>1) \end{cases} \\\\ &\begin{cases} \bold{T}_1^v=\bold G \\\\ \bold{T}_i^v =\bold{G}-\sum\limits_{j=1}^{i-1}\dfrac{\vec{v}'_{l_j}\otimes\vec{v}'_{l_j}}{|\vec{v}'_{l_j}|\cdot|\vec{v}'_{l_j}|} =\bold{G}-\sum\limits_{j=1}^{i-1}\vec{v}''_{l_j}\otimes\vec{v}''_{l_j}\quad(i>1) \end{cases} \end{aligned} T1u=GTiu=Gj=1i1u lju lju lju lj=Gj=1i1u lj′′u lj′′(i>1) T1v=GTiv=Gj=1i1v ljv ljv ljv lj=Gj=1i1v lj′′v lj′′(i>1)

构造二阶张量:
Q = ∑ i = 1 n u ⃗ l i ′ ′ ⊗ v ⃗ l i ′ ′ \bold Q=\sum_{i=1}^{n}\vec{u}''_{l_i}\otimes\vec{v}''_{l_i} Q=i=1nu li′′v li′′
注: { u ⃗ l 1 ′ ′ , … , u ⃗ l k ′ ′ } 、 { v ⃗ l 1 ′ ′ , … , v ⃗ l k ′ ′ } \{\vec{u}''_{l_1},\dots,\vec{u}''_{l_k}\}、\{\vec{v}''_{l_1},\dots,\vec{v}''_{l_k}\} {u l1′′,,u lk′′}{v l1′′,,v lk′′}由正交化、归一化得到,而 { u ⃗ l k + 1 ′ ′ , … , u ⃗ l m ′ ′ } 、 { v ⃗ l k + 1 ′ ′ , … , v ⃗ l n ′ ′ } \{\vec{u}''_{l_k+1},\dots,\vec{u}''_{l_m}\}、\{\vec{v}''_{l_k+1},\dots,\vec{v}''_{l_n}\} {u lk+1′′,,u lm′′}{v lk+1′′,,v ln′′}则是扩充至 R n \mathbb{R}^n Rn 所采用的额外的标准正交基(那么这样构造出来的 Q \bold Q Q 显然不是唯一的)。由于
Q ⋅ Q T = ∑ i = 1 n ( u ⃗ l i ′ ′ ⊗ v ⃗ l i ′ ′ ) ⋅ ∑ j = 1 n ( v ⃗ l j ′ ′ ⊗ u ⃗ l j ′ ′ ) = ∑ i = 1 n u ⃗ l i ′ ′ ⊗ u ⃗ l i ′ ′ = G \bold Q\cdot\bold Q^T =\sum_{i=1}^{n}(\vec{u}''_{l_i}\otimes\vec{v}''_{l_i})\cdot\sum_{j=1}^{n}(\vec{v}''_{l_j}\otimes\vec{u}''_{l_j}) =\sum_{i=1}^{n}\vec{u}''_{l_i}\otimes\vec{u}''_{l_i}=\bold G QQT=i=1n(u li′′v li′′)j=1n(v lj′′u lj′′)=i=1nu li′′u li′′=G
Q \bold Q Q 为正交仿射量,且有:
u ⃗ l i ′ ′ = Q ⋅ v ⃗ l i ′ ′ ( i = 1 , 2 , … , k )   Q ⋅ T i v ⋅ Q T = T i u ( i = 1 , 2 , … , k ) \vec{u}''_{l_i}=\bold Q\cdot\vec{v}''_{l_i}\quad(i=1,2,\dots,k)\\\ \\ \bold{Q}\cdot\bold{T}_i^v\cdot\bold{Q}^T=\bold{T}_i^u\quad(i=1,2,\dots,k) u li′′=Qv li′′(i=1,2,,k) QTivQT=Tiu(i=1,2,,k)
那么,
1 ∣ u ⃗ l i ′ ∣ T i u ⋅ u ⃗ l i = Q ⋅ 1 ∣ v ⃗ l i ′ ∣ T i v ⋅ v ⃗ l i = 1 ∣ v ⃗ l i ′ ∣ ( Q ⋅ T i v ⋅ Q T ) ⋅ ( Q ⋅ v ⃗ l i ) = 1 ∣ v ⃗ l i ′ ∣ ⋅ T i u ⋅ ( Q ⋅ v ⃗ l i ) ( i = 1 , 2 , … , k ) ( ∗ ∗ ) \dfrac{1}{|\vec{u}'_{l_i}|}\bold{T}^u_{i}\cdot\vec{u}_{l_i} =\bold{Q}\cdot\dfrac{1}{|\vec{v}'_{l_i}|}\bold{T}^v_{i}\cdot\vec{v}_{l_i} =\dfrac{1}{|\vec{v}'_{l_i}|}(\bold{Q}\cdot\bold{T}^v_{i}\cdot\bold{Q}^T)\cdot(\bold{Q}\cdot\vec{v}_{l_i}) =\dfrac{1}{|\vec{v}'_{l_i}|}\cdot\bold{T}^u_{i}\cdot(\bold{Q}\cdot\vec{v}_{l_i})\quad(i=1,2,\dots,k)\quad(**) u li1Tiuu li=Qv li1Tivv li=v li1(QTivQT)(Qv li)=v li1Tiu(Qv li)(i=1,2,,k)()
由于两向量组间满足:
u ⃗ i ⋅ u ⃗ j = v ⃗ i ⋅ v ⃗ j ( i , j = 1 , 2 , … , m ) \vec{u}_i\cdot\vec{u}_j=\vec{v}_i\cdot\vec{v}_j\quad(i,j=1,2,\dots,m) u iu j=v iv j(i,j=1,2,,m)
并根据Schmidt 正交化的表达式与归纳假设的方法可以证明得到:
∣ u ⃗ l i ′ ∣ = ∣ v ⃗ l i ′ ∣ ( i = 1 , 2 , … , k ) |\vec{u}'_{l_i}|=|\vec{v}'_{l_i}|\quad(i=1,2,\dots,k) u li=v li(i=1,2,,k)
那么由 ( ∗ ∗ ) (**) ()式可得:
T i u ⋅ ( u ⃗ l i − Q ⋅ v ⃗ l i ) = 0 ( i = 1 , 2 , … , k ) \bold{T}^u_{i}\cdot(\vec{u}_{l_i}-\bold{Q}\cdot\vec{v}_{l_i})=0\quad(i=1,2,\dots,k) Tiu(u liQv li)=0(i=1,2,,k)
上式中,只有 Q \bold Q Q 是可变的,另外注意到
d e t ( T i u ) = d e t ( T i v ) = 0 ( i = 2 , 3 , … , k ) det(\bold{T}^u_{i})=det(\bold{T}^v_{i})=0\quad(i=2,3,\dots,k) det(Tiu)=det(Tiv)=0(i=2,3,,k)
表明并不是所有构造出的正交张量均可以使得
u ⃗ l i = Q ⋅ v ⃗ l i ( i = 1 , 2 , … , k ) \vec{u}_{l_i}=\bold{Q}\cdot\vec{v}_{l_i}\quad(i=1,2,\dots,k) u li=Qv li(i=1,2,,k)
但是,由于上述齐次线性方程组必定存在零解,即在我们所构造出的正交张量的集合中必定至少存在一个 Q ^ \hat{\bold Q} Q^ 使得
u ⃗ l i = Q ^ ⋅ v ⃗ l i ( i = 1 , 2 , … , k ) \vec{u}_{l_i}=\hat{\bold Q}\cdot\vec{v}_{l_i}\quad(i=1,2,\dots,k) u li=Q^v li(i=1,2,,k)
成立。特别的,若问题所考虑的两个向量组是 R n R^n Rn 中满秩的,那么此时所能构造出的 Q \bold Q Q 是唯一的,并且它必须满足命题的条件。(证毕)

2. Cauchy 基本表示定理

Cauchy 基本表示定理 m m m 个向量 v ⃗ i ( i = 1 , 2 , 3 , … , m ) \vec{v}_i(i=1,2,3,\dots,m) v ii=1,2,3,,m为变元的标量值函数
φ = φ ( v ⃗ 1 , v ⃗ 2 , … , v ⃗ m ) \varphi=\varphi(\vec{v}_1,\vec{v}_2,\dots,\vec{v}_m) φ=φ(v 1,v 2,,v m)
是各向同性的充要条件是 φ \varphi φ 可表示为这些向量内积的函数:
φ = φ ∗ ( v ⃗ i ⋅ v ⃗ j ) ( i , j = 1 , 2 , … , m ) \varphi = \varphi^*(\vec{v}_i\cdot\vec{v}_j)(i,j=1,2,\dots,m) φ=φ(v iv j)i,j=1,2,,m

证明:(充分性)若以向量为自变量的函数 φ \varphi φ 可表示为向量内积的函数,即:
φ = φ ( v ⃗ 1 , v ⃗ 2 , … , v ⃗ m ) = φ ∗ ( v ⃗ i ⋅ v ⃗ j ) ( i , j = 1 , 2 , … , m ) \varphi =\varphi(\vec{v}_1,\vec{v}_2,\dots,\vec{v}_m) =\varphi^*(\vec{v}_i\cdot\vec{v}_j)(i,j=1,2,\dots,m) φ=φ(v 1,v 2,,v m)=φ(v iv j)i,j=1,2,,m
由于
( Q ⋅ v ⃗ i ) ⋅ ( Q ⋅ v ⃗ j ) = v ⃗ i ⋅ ( Q T ⋅ Q ) ⋅ v ⃗ j = v ⃗ i ⋅ v ⃗ j ( i , j = 1 , 2 , … , m ) (\bold{Q}\cdot\vec{v}_i)\cdot(\bold{Q}\cdot\vec{v}_j) =\vec{v}_i\cdot(\bold{Q}^T\cdot\bold{Q})\cdot\vec{v}_j =\vec{v}_i\cdot\vec{v}_j(i,j=1,2,\dots,m) (Qv i)(Qv j)=v i(QTQ)v j=v iv ji,j=1,2,,m
φ \varphi φ 为各向同性张量函数。

(必要性)若张量函数 φ \varphi φ 是各向同性的,任意选取另外一组向量 u ⃗ 1 , u ⃗ 2 , … , u ⃗ m \vec{u}_1,\vec{u}_2,\dots,\vec{u}_m u 1,u 2,,u m ,且满足:
u ⃗ i ⋅ u ⃗ j = v ⃗ i ⋅ v ⃗ j ( i , j = 1 , 2 , … , m ) \vec{u}_i\cdot\vec{u}_j=\vec{v}_i\cdot\vec{v}_j\quad(i,j=1,2,\dots,m) u iu j=v iv j(i,j=1,2,,m)
若均有:
φ ( v ⃗ 1 , v ⃗ 2 , … , v ⃗ m ) = φ ( u ⃗ 1 , u ⃗ 2 , … , u ⃗ m ) \varphi(\vec{v}_1,\vec{v}_2,\dots,\vec{v}_m)=\varphi(\vec{u}_1,\vec{u}_2,\dots,\vec{u}_m) φ(v 1,v 2,,v m)=φ(u 1,u 2,,u m)
则说明该各向同性张量函数只与向量的内积相关,故可以表示为向量内积的函数:
φ = φ ∗ ( v ⃗ i ⋅ v ⃗ j ) ( i , j = 1 , 2 , … , m ) \varphi = \varphi^*(\vec{v}_i\cdot\vec{v}_j)(i,j=1,2,\dots,m) φ=φ(v iv j)i,j=1,2,,m
根据前述的引理:
∃ Q ∈ O 3 , s . t .   v ⃗ i = u ⃗ i ⋅ Q ( i = 1 , 2 , … , m ) \exists \bold Q\in\mathcal{O}_3,s.t. \ \vec{v}_i=\vec{u}_i\cdot\bold{Q}\quad(i=1,2,\dots,m) QO3s.t. v i=u iQ(i=1,2,,m)

φ ( v ⃗ 1 , v ⃗ 2 , … , v ⃗ m ) = φ ( u ⃗ 1 ⋅ Q , u ⃗ 2 ⋅ Q , … , u ⃗ m ⋅ Q ) = φ ( u ⃗ 1 , u ⃗ 2 , … , u ⃗ m ) \varphi(\vec{v}_1,\vec{v}_2,\dots,\vec{v}_m)=\varphi(\vec{u}_1\cdot\bold{Q},\vec{u}_2\cdot\bold{Q},\dots,\vec{u}_m\cdot\bold{Q})=\varphi(\vec{u}_1,\vec{u}_2,\dots,\vec{u}_m) φ(v 1,v 2,,v m)=φ(u 1Q,u 2Q,,u mQ)=φ(u 1,u 2,,u m)
上式第二个等号根据张量函数的各向同性得到。(证毕)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值