本文主要内容如下:
1. 与证明相关的引理
引理 若向量组
{
v
⃗
1
,
v
⃗
2
,
…
,
v
⃗
m
}
、
{
u
⃗
1
,
u
⃗
2
,
…
,
u
⃗
m
}
(
u
⃗
i
,
v
⃗
i
∈
R
n
)
\{\vec{v}_1,\vec{v}_2,\dots,\vec{v}_m\}、\{\vec{u}_1,\vec{u}_2,\dots,\vec{u}_m\}(\vec{u}_i,\vec{v}_i\in R^n)
{v1,v2,…,vm}、{u1,u2,…,um}(ui,vi∈Rn) 之间满足:
u
⃗
i
⋅
u
⃗
j
=
v
⃗
i
⋅
v
⃗
j
(
i
,
j
=
1
,
2
,
…
,
m
)
\vec{u}_i\cdot\vec{u}_j=\vec{v}_i\cdot\vec{v}_j\quad(i,j=1,2,\dots,m)
ui⋅uj=vi⋅vj(i,j=1,2,…,m)
则有:
(1) 若
{
v
⃗
1
,
v
⃗
2
,
…
,
v
⃗
m
}
\{\vec{v}_1,\vec{v}_2,\dots,\vec{v}_m\}
{v1,v2,…,vm} 的极大线性无关组为:
{
v
⃗
l
1
,
v
⃗
l
2
,
…
,
v
⃗
l
k
}
其中,
l
1
,
l
2
,
…
,
l
k
∈
{
1
,
2
,
…
,
m
}
;
k
=
r
a
n
k
(
{
v
⃗
i
}
)
\{\vec{v}_{l_1},\vec{v}_{l_2},\dots,\vec{v}_{l_k}\}\ 其中,l_1,l_2,\dots,l_k\in\{1,2,\dots,m\};k=rank(\{\vec{v}_i\})
{vl1,vl2,…,vlk} 其中,l1,l2,…,lk∈{1,2,…,m};k=rank({vi})
那么,对应的
{
u
⃗
l
1
,
u
⃗
l
2
,
…
,
u
⃗
l
k
}
\{\vec{u}_{l_1},\vec{u}_{l_2},\dots,\vec{u}_{l_k}\}
{ul1,ul2,…,ulk}
为
{
u
⃗
1
,
u
⃗
2
,
…
,
u
⃗
m
}
\{\vec{u}_1,\vec{u}_2,\dots,\vec{u}_m\}
{u1,u2,…,um} 的极大线性无关组。
(2)
∃
Q
∈
O
3
,
s
.
t
.
v
⃗
i
=
u
⃗
i
⋅
Q
(
i
=
1
,
2
,
…
,
m
)
\exists \bold Q\in\mathcal{O}_3,s.t. \ \vec{v}_i=\vec{u}_i\cdot\bold{Q}\quad(i=1,2,\dots,m)
∃Q∈O3,s.t. vi=ui⋅Q(i=1,2,…,m)
证明如下:
(1) 先证明
{
u
⃗
l
1
,
u
⃗
l
2
,
…
,
u
⃗
l
k
}
\{\vec{u}_{l_1},\vec{u}_{l_2},\dots,\vec{u}_{l_k}\}
{ul1,ul2,…,ulk} 线性无关,令
a
l
1
u
⃗
l
1
+
a
l
2
u
⃗
l
2
+
⋯
+
a
l
k
u
⃗
l
k
=
0
a_{l_1}\vec{u}_{l_1}+a_{l_2}\vec{u}_{l_2}+\dots+a_{l_k}\vec{u}_{l_k}=0
al1ul1+al2ul2+⋯+alkulk=0
那么有:
{
(
a
l
1
u
⃗
l
1
+
a
l
2
u
⃗
l
2
+
⋯
+
a
l
k
u
⃗
l
k
)
⋅
(
a
l
1
u
⃗
l
1
)
=
(
a
l
1
v
⃗
l
1
+
a
l
2
v
⃗
l
2
+
⋯
+
a
l
k
v
⃗
l
k
)
⋅
(
a
l
1
v
⃗
l
1
)
=
0
(
a
l
1
u
⃗
l
1
+
a
l
2
u
⃗
l
2
+
⋯
+
a
l
k
u
⃗
l
k
)
⋅
(
a
l
2
u
⃗
l
2
)
=
(
a
l
1
v
⃗
l
1
+
a
l
2
v
⃗
l
2
+
⋯
+
a
l
k
v
⃗
l
k
)
⋅
(
a
l
2
v
⃗
l
2
)
=
0
…
(
a
l
1
u
⃗
l
1
+
a
l
2
u
⃗
l
2
+
⋯
+
a
l
k
u
⃗
l
k
)
⋅
(
a
l
k
u
⃗
l
k
)
=
(
a
l
1
v
⃗
l
1
+
a
l
2
v
⃗
l
2
+
⋯
+
a
l
k
v
⃗
l
k
)
⋅
(
a
l
k
v
⃗
l
k
)
=
0
\begin{cases} (a_{l_1}\vec{u}_{l_1}+a_{l_2}\vec{u}_{l_2}+\dots+a_{l_k}\vec{u}_{l_k})\cdot(a_{l_1}\vec{u}_{l_1})=(a_{l_1}\vec{v}_{l_1}+a_{l_2}\vec{v}_{l_2}+\dots+a_{l_k}\vec{v}_{l_k})\cdot(a_{l_1}\vec{v}_{l_1})=0\\\\ (a_{l_1}\vec{u}_{l_1}+a_{l_2}\vec{u}_{l_2}+\dots+a_{l_k}\vec{u}_{l_k})\cdot(a_{l_2}\vec{u}_{l_2})=(a_{l_1}\vec{v}_{l_1}+a_{l_2}\vec{v}_{l_2}+\dots+a_{l_k}\vec{v}_{l_k})\cdot(a_{l_2}\vec{v}_{l_2})=0\\\\ \dots\\\\ (a_{l_1}\vec{u}_{l_1}+a_{l_2}\vec{u}_{l_2}+\dots+a_{l_k}\vec{u}_{l_k})\cdot(a_{l_k}\vec{u}_{l_k})=(a_{l_1}\vec{v}_{l_1}+a_{l_2}\vec{v}_{l_2}+\dots+a_{l_k}\vec{v}_{l_k})\cdot(a_{l_k}\vec{v}_{l_k})=0 \end{cases}
⎩
⎨
⎧(al1ul1+al2ul2+⋯+alkulk)⋅(al1ul1)=(al1vl1+al2vl2+⋯+alkvlk)⋅(al1vl1)=0(al1ul1+al2ul2+⋯+alkulk)⋅(al2ul2)=(al1vl1+al2vl2+⋯+alkvlk)⋅(al2vl2)=0…(al1ul1+al2ul2+⋯+alkulk)⋅(alkulk)=(al1vl1+al2vl2+⋯+alkvlk)⋅(alkvlk)=0
相加得到:
(
a
l
1
v
⃗
l
1
+
a
l
2
v
⃗
l
2
+
⋯
+
a
l
k
v
⃗
l
k
)
⋅
(
a
l
1
v
⃗
l
1
+
a
l
2
v
⃗
l
2
+
⋯
+
a
l
k
v
⃗
l
k
)
=
0
(a_{l_1}\vec{v}_{l_1}+a_{l_2}\vec{v}_{l_2}+\dots+a_{l_k}\vec{v}_{l_k})\cdot(a_{l_1}\vec{v}_{l_1}+a_{l_2}\vec{v}_{l_2}+\dots+a_{l_k}\vec{v}_{l_k})=0
(al1vl1+al2vl2+⋯+alkvlk)⋅(al1vl1+al2vl2+⋯+alkvlk)=0
即,
a
l
1
v
⃗
l
1
+
a
l
2
v
⃗
l
2
+
⋯
+
a
l
k
v
⃗
l
k
=
0
a_{l_1}\vec{v}_{l_1}+a_{l_2}\vec{v}_{l_2}+\dots+a_{l_k}\vec{v}_{l_k}=0
al1vl1+al2vl2+⋯+alkvlk=0
由于
{
v
⃗
l
1
,
v
⃗
l
2
,
…
,
v
⃗
l
k
}
\{\vec{v}_{l_1},\vec{v}_{l_2},\dots,\vec{v}_{l_k}\}
{vl1,vl2,…,vlk} 线性无关,
a
l
1
,
a
l
2
,
…
,
a
l
k
=
0
a_{l_1},a_{l_2},\dots,a_{l_k}=0
al1,al2,…,alk=0
则,
{
u
⃗
l
1
,
u
⃗
l
2
,
…
,
u
⃗
l
k
}
\{\vec{u}_{l_1},\vec{u}_{l_2},\dots,\vec{u}_{l_k}\}
{ul1,ul2,…,ulk} 线性无关。
采用反证法证明,线性无关的极大性,从向量组
{
u
⃗
1
,
u
⃗
2
,
…
,
u
⃗
m
}
\{\vec{u}_1,\vec{u}_2,\dots,\vec{u}_m\}
{u1,u2,…,um} 中任选一个除
{
u
⃗
l
1
,
u
⃗
l
2
,
…
,
u
⃗
l
k
}
\{\vec{u}_{l_1},\vec{u}_{l_2},\dots,\vec{u}_{l_k}\}
{ul1,ul2,…,ulk} 外的其它向量
u
⃗
s
\vec{u}_s
us,构成新的向量组,若该向量组线性无关,即,当且仅当
b
l
1
=
b
l
2
=
⋯
=
b
l
k
=
c
s
=
0
b_{l_1}=b_{l_2}=\dots=b_{l_k}=c_s=0
bl1=bl2=⋯=blk=cs=0时,方有:
b
l
1
u
⃗
l
1
+
b
l
2
u
⃗
l
2
+
⋯
+
b
l
k
u
⃗
l
k
+
c
s
u
⃗
s
=
0
(
∗
)
b_{l_1}\vec{u}_{l_1}+b_{l_2}\vec{u}_{l_2}+\dots+b_{l_k}\vec{u}_{l_k}+c_s\vec{u}_s=0(*)
bl1ul1+bl2ul2+⋯+blkulk+csus=0(∗)
采用上文同样的处理方式,可由(*)得到:
b
l
1
v
⃗
l
1
+
b
l
2
v
⃗
l
2
+
⋯
+
b
l
k
v
⃗
l
k
+
c
s
v
⃗
s
=
0
b_{l_1}\vec{v}_{l_1}+b_{l_2}\vec{v}_{l_2}+\dots+b_{l_k}\vec{v}_{l_k}+c_s\vec{v}_s=0
bl1vl1+bl2vl2+⋯+blkvlk+csvs=0
当且仅当
b
l
1
=
b
l
2
=
⋯
=
b
l
k
=
c
s
=
0
b_{l_1}=b_{l_2}=\dots=b_{l_k}=c_s=0
bl1=bl2=⋯=blk=cs=0 时成立。这与
{
v
⃗
1
,
v
⃗
2
,
…
,
v
⃗
m
}
\{\vec{v}_1,\vec{v}_2,\dots,\vec{v}_m\}
{v1,v2,…,vm} 的极大线性无关组为
{
v
⃗
l
1
,
v
⃗
l
2
,
…
,
v
⃗
l
k
}
\{\vec{v}_{l_1},\vec{v}_{l_2},\dots,\vec{v}_{l_k}\}
{vl1,vl2,…,vlk} 相矛盾。从而说明了向量组
{
u
⃗
l
1
,
u
⃗
l
2
,
…
,
u
⃗
l
k
}
\{\vec{u}_{l_1},\vec{u}_{l_2},\dots,\vec{u}_{l_k}\}
{ul1,ul2,…,ulk} 线性无关的极大性,同时还可知道 两向量组中的序号相同的向量由各自极大线性无关组进行线性组合得到时,所采用的组合系数相同。(证毕)
(2) 若两个向量组的极大线性无关组间可通过正交变换一 一对应:
v
⃗
l
i
=
u
⃗
l
i
⋅
Q
(
l
1
,
…
,
l
i
,
…
,
l
k
∈
{
1
,
2
,
…
,
m
}
;
k
=
r
(
{
v
⃗
i
}
)
)
\vec{v}_{l_i}=\vec{u}_{l_i}\cdot\bold Q\quad(l_1,\dots,l_i,\dots,l_k\in\{1,2,\dots,m\};k=r(\{\vec{v}_i\}))
vli=uli⋅Q(l1,…,li,…,lk∈{1,2,…,m};k=r({vi}))
则,向量组外的其它向量也可通过正交变换一 一对应,即
v
⃗
s
=
∑
i
=
1
k
a
l
i
v
⃗
l
i
=
∑
p
i
=
1
k
a
l
i
u
⃗
l
i
⋅
Q
=
u
⃗
s
⋅
Q
(
s
=
1
,
2
,
…
,
m
)
\vec{v}_s=\sum_{i=1}^ka_{l_i}\vec{v}_{l_i}=\sum_{pi=1}^ka_{l_i}\vec{u}_{l_i}\cdot\bold Q=\vec{u}_s\cdot\bold Q\quad(s=1,2,\dots,m)
vs=i=1∑kalivli=pi=1∑kaliuli⋅Q=us⋅Q(s=1,2,…,m)
说明要证明命题(2)只需要证明两个向量组的极大线性无关组可通过正交变换一 一 对应。
利用 Schmidt 正交化、归一化将极大线性无关组转换为标准正交基:
{
u
⃗
l
1
′
=
u
⃗
l
1
u
⃗
l
2
′
=
u
⃗
l
2
−
u
⃗
l
1
′
⋅
u
⃗
l
2
u
⃗
l
1
′
⋅
u
⃗
l
1
′
u
⃗
l
1
′
u
⃗
l
3
′
=
u
⃗
l
3
−
u
⃗
l
1
′
⋅
u
⃗
l
3
u
⃗
l
1
′
⋅
u
⃗
l
1
′
u
⃗
l
1
′
−
u
⃗
l
2
′
⋅
u
⃗
l
3
u
⃗
l
2
′
⋅
u
⃗
l
2
′
u
⃗
l
2
′
u
⃗
l
4
′
=
u
⃗
l
4
−
u
⃗
l
1
′
⋅
u
⃗
l
4
u
⃗
l
1
′
⋅
u
⃗
l
1
′
u
⃗
l
1
′
−
u
⃗
l
2
′
⋅
u
⃗
l
4
u
⃗
l
2
′
⋅
u
⃗
l
2
′
u
⃗
l
2
′
−
u
⃗
l
3
′
⋅
u
⃗
l
4
u
⃗
l
3
′
⋅
u
⃗
l
3
′
u
⃗
l
3
′
…
⟹
{
u
⃗
l
1
′
′
=
u
⃗
l
1
′
∣
u
⃗
l
1
′
∣
u
⃗
l
2
′
′
=
u
⃗
l
2
′
∣
u
⃗
l
2
′
∣
u
⃗
l
3
′
′
=
u
⃗
l
3
′
∣
u
⃗
l
3
′
∣
u
⃗
l
4
′
′
=
u
⃗
l
4
′
∣
u
⃗
l
4
′
∣
…
\begin{cases} \vec{u}'_{l_1}=\vec{u}_{l_1}\\\\ \vec{u}'_{l_2}=\vec{u}_{l_2}-\dfrac{\vec{u}'_{l_1}\cdot\vec{u}_{l_2}}{\vec{u}'_{l_1}\cdot\vec{u}'_{l_1}}\vec{u}'_{l_1}\\\\ \vec{u}'_{l_3}=\vec{u}_{l_3}-\dfrac{\vec{u}'_{l_1}\cdot\vec{u}_{l_3}}{\vec{u}'_{l_1}\cdot\vec{u}'_{l_1}}\vec{u}'_{l_1}-\dfrac{\vec{u}'_{l_2}\cdot\vec{u}_{l_3}}{\vec{u}'_{l_2}\cdot\vec{u}'_{l_2}}\vec{u}'_{l_2}\\\\ \vec{u}'_{l_4}=\vec{u}_{l_4}-\dfrac{\vec{u}'_{l_1}\cdot\vec{u}_{l_4}}{\vec{u}'_{l_1}\cdot\vec{u}'_{l_1}}\vec{u}'_{l_1}-\dfrac{\vec{u}'_{l_2}\cdot\vec{u}_{l_4}}{\vec{u}'_{l_2}\cdot\vec{u}'_{l_2}}\vec{u}'_{l_2}-\dfrac{\vec{u}'_{l_3}\cdot\vec{u}_{l_4}}{\vec{u}'_{l_3}\cdot\vec{u}'_{l_3}}\vec{u}'_{l_3}\\\\ \dots \end{cases} \Longrightarrow \begin{cases} \vec{u}''_{l_1}=\dfrac{\vec{u}'_{l_1}}{|\vec{u}'_{l_1}|}\\\\ \vec{u}''_{l_2}=\dfrac{\vec{u}'_{l_2}}{|\vec{u}'_{l_2}|}\\\\ \vec{u}''_{l_3}=\dfrac{\vec{u}'_{l_3}}{|\vec{u}'_{l_3}|}\\\\ \vec{u}''_{l_4}=\dfrac{\vec{u}'_{l_4}}{|\vec{u}'_{l_4}|}\\\\ \dots \end{cases}
⎩
⎨
⎧ul1′=ul1ul2′=ul2−ul1′⋅ul1′ul1′⋅ul2ul1′ul3′=ul3−ul1′⋅ul1′ul1′⋅ul3ul1′−ul2′⋅ul2′ul2′⋅ul3ul2′ul4′=ul4−ul1′⋅ul1′ul1′⋅ul4ul1′−ul2′⋅ul2′ul2′⋅ul4ul2′−ul3′⋅ul3′ul3′⋅ul4ul3′…⟹⎩
⎨
⎧ul1′′=∣ul1′∣ul1′ul2′′=∣ul2′∣ul2′ul3′′=∣ul3′∣ul3′ul4′′=∣ul4′∣ul4′…
向量组
{
v
⃗
l
i
}
(
i
=
1
,
2
,
…
,
k
)
\{\vec{v}_{l_i}\}(i=1,2,\dots,k)
{vli}(i=1,2,…,k)可进行同样的运算。上述正交化过程可以写作:
u
⃗
l
i
′
=
T
i
u
⋅
u
⃗
l
i
(
i
=
1
,
2
,
…
,
k
)
v
⃗
l
i
′
=
T
i
v
⋅
v
⃗
l
i
(
i
=
1
,
2
,
…
,
k
)
\vec{u}'_{l_i}=\bold{T}_i^u\cdot\vec{u}_{l_i} \quad(i=1,2,\dots,k)\\\ \\ \vec{v}'_{l_i}=\bold{T}_i^v\cdot\vec{v}_{l_i}\quad(i=1,2,\dots,k)
uli′=Tiu⋅uli(i=1,2,…,k) vli′=Tiv⋅vli(i=1,2,…,k)
其中,
{
T
1
u
=
G
T
i
u
=
G
−
∑
j
=
1
i
−
1
u
⃗
l
j
′
⊗
u
⃗
l
j
′
∣
u
⃗
l
j
′
∣
⋅
∣
u
⃗
l
j
′
∣
=
G
−
∑
j
=
1
i
−
1
u
⃗
l
j
′
′
⊗
u
⃗
l
j
′
′
(
i
>
1
)
{
T
1
v
=
G
T
i
v
=
G
−
∑
j
=
1
i
−
1
v
⃗
l
j
′
⊗
v
⃗
l
j
′
∣
v
⃗
l
j
′
∣
⋅
∣
v
⃗
l
j
′
∣
=
G
−
∑
j
=
1
i
−
1
v
⃗
l
j
′
′
⊗
v
⃗
l
j
′
′
(
i
>
1
)
\begin{aligned} &\begin{cases} \bold{T}_1^u=\bold G \\\\ \bold{T}_i^u =\bold{G}-\sum\limits_{j=1}^{i-1}\dfrac{\vec{u}'_{l_j}\otimes\vec{u}'_{l_j}}{|\vec{u}'_{l_j}|\cdot|\vec{u}'_{l_j}|} =\bold{G}-\sum\limits_{j=1}^{i-1}\vec{u}''_{l_j}\otimes\vec{u}''_{l_j}\quad(i>1) \end{cases} \\\\ &\begin{cases} \bold{T}_1^v=\bold G \\\\ \bold{T}_i^v =\bold{G}-\sum\limits_{j=1}^{i-1}\dfrac{\vec{v}'_{l_j}\otimes\vec{v}'_{l_j}}{|\vec{v}'_{l_j}|\cdot|\vec{v}'_{l_j}|} =\bold{G}-\sum\limits_{j=1}^{i-1}\vec{v}''_{l_j}\otimes\vec{v}''_{l_j}\quad(i>1) \end{cases} \end{aligned}
⎩
⎨
⎧T1u=GTiu=G−j=1∑i−1∣ulj′∣⋅∣ulj′∣ulj′⊗ulj′=G−j=1∑i−1ulj′′⊗ulj′′(i>1)⎩
⎨
⎧T1v=GTiv=G−j=1∑i−1∣vlj′∣⋅∣vlj′∣vlj′⊗vlj′=G−j=1∑i−1vlj′′⊗vlj′′(i>1)
构造二阶张量:
Q
=
∑
i
=
1
n
u
⃗
l
i
′
′
⊗
v
⃗
l
i
′
′
\bold Q=\sum_{i=1}^{n}\vec{u}''_{l_i}\otimes\vec{v}''_{l_i}
Q=i=1∑nuli′′⊗vli′′
注:
{
u
⃗
l
1
′
′
,
…
,
u
⃗
l
k
′
′
}
、
{
v
⃗
l
1
′
′
,
…
,
v
⃗
l
k
′
′
}
\{\vec{u}''_{l_1},\dots,\vec{u}''_{l_k}\}、\{\vec{v}''_{l_1},\dots,\vec{v}''_{l_k}\}
{ul1′′,…,ulk′′}、{vl1′′,…,vlk′′}由正交化、归一化得到,而
{
u
⃗
l
k
+
1
′
′
,
…
,
u
⃗
l
m
′
′
}
、
{
v
⃗
l
k
+
1
′
′
,
…
,
v
⃗
l
n
′
′
}
\{\vec{u}''_{l_k+1},\dots,\vec{u}''_{l_m}\}、\{\vec{v}''_{l_k+1},\dots,\vec{v}''_{l_n}\}
{ulk+1′′,…,ulm′′}、{vlk+1′′,…,vln′′}则是扩充至
R
n
\mathbb{R}^n
Rn 所采用的额外的标准正交基(那么这样构造出来的
Q
\bold Q
Q 显然不是唯一的)。由于
Q
⋅
Q
T
=
∑
i
=
1
n
(
u
⃗
l
i
′
′
⊗
v
⃗
l
i
′
′
)
⋅
∑
j
=
1
n
(
v
⃗
l
j
′
′
⊗
u
⃗
l
j
′
′
)
=
∑
i
=
1
n
u
⃗
l
i
′
′
⊗
u
⃗
l
i
′
′
=
G
\bold Q\cdot\bold Q^T =\sum_{i=1}^{n}(\vec{u}''_{l_i}\otimes\vec{v}''_{l_i})\cdot\sum_{j=1}^{n}(\vec{v}''_{l_j}\otimes\vec{u}''_{l_j}) =\sum_{i=1}^{n}\vec{u}''_{l_i}\otimes\vec{u}''_{l_i}=\bold G
Q⋅QT=i=1∑n(uli′′⊗vli′′)⋅j=1∑n(vlj′′⊗ulj′′)=i=1∑nuli′′⊗uli′′=G
故
Q
\bold Q
Q 为正交仿射量,且有:
u
⃗
l
i
′
′
=
Q
⋅
v
⃗
l
i
′
′
(
i
=
1
,
2
,
…
,
k
)
Q
⋅
T
i
v
⋅
Q
T
=
T
i
u
(
i
=
1
,
2
,
…
,
k
)
\vec{u}''_{l_i}=\bold Q\cdot\vec{v}''_{l_i}\quad(i=1,2,\dots,k)\\\ \\ \bold{Q}\cdot\bold{T}_i^v\cdot\bold{Q}^T=\bold{T}_i^u\quad(i=1,2,\dots,k)
uli′′=Q⋅vli′′(i=1,2,…,k) Q⋅Tiv⋅QT=Tiu(i=1,2,…,k)
那么,
1
∣
u
⃗
l
i
′
∣
T
i
u
⋅
u
⃗
l
i
=
Q
⋅
1
∣
v
⃗
l
i
′
∣
T
i
v
⋅
v
⃗
l
i
=
1
∣
v
⃗
l
i
′
∣
(
Q
⋅
T
i
v
⋅
Q
T
)
⋅
(
Q
⋅
v
⃗
l
i
)
=
1
∣
v
⃗
l
i
′
∣
⋅
T
i
u
⋅
(
Q
⋅
v
⃗
l
i
)
(
i
=
1
,
2
,
…
,
k
)
(
∗
∗
)
\dfrac{1}{|\vec{u}'_{l_i}|}\bold{T}^u_{i}\cdot\vec{u}_{l_i} =\bold{Q}\cdot\dfrac{1}{|\vec{v}'_{l_i}|}\bold{T}^v_{i}\cdot\vec{v}_{l_i} =\dfrac{1}{|\vec{v}'_{l_i}|}(\bold{Q}\cdot\bold{T}^v_{i}\cdot\bold{Q}^T)\cdot(\bold{Q}\cdot\vec{v}_{l_i}) =\dfrac{1}{|\vec{v}'_{l_i}|}\cdot\bold{T}^u_{i}\cdot(\bold{Q}\cdot\vec{v}_{l_i})\quad(i=1,2,\dots,k)\quad(**)
∣uli′∣1Tiu⋅uli=Q⋅∣vli′∣1Tiv⋅vli=∣vli′∣1(Q⋅Tiv⋅QT)⋅(Q⋅vli)=∣vli′∣1⋅Tiu⋅(Q⋅vli)(i=1,2,…,k)(∗∗)
由于两向量组间满足:
u
⃗
i
⋅
u
⃗
j
=
v
⃗
i
⋅
v
⃗
j
(
i
,
j
=
1
,
2
,
…
,
m
)
\vec{u}_i\cdot\vec{u}_j=\vec{v}_i\cdot\vec{v}_j\quad(i,j=1,2,\dots,m)
ui⋅uj=vi⋅vj(i,j=1,2,…,m)
并根据Schmidt 正交化的表达式与归纳假设的方法可以证明得到:
∣
u
⃗
l
i
′
∣
=
∣
v
⃗
l
i
′
∣
(
i
=
1
,
2
,
…
,
k
)
|\vec{u}'_{l_i}|=|\vec{v}'_{l_i}|\quad(i=1,2,\dots,k)
∣uli′∣=∣vli′∣(i=1,2,…,k)
那么由
(
∗
∗
)
(**)
(∗∗)式可得:
T
i
u
⋅
(
u
⃗
l
i
−
Q
⋅
v
⃗
l
i
)
=
0
(
i
=
1
,
2
,
…
,
k
)
\bold{T}^u_{i}\cdot(\vec{u}_{l_i}-\bold{Q}\cdot\vec{v}_{l_i})=0\quad(i=1,2,\dots,k)
Tiu⋅(uli−Q⋅vli)=0(i=1,2,…,k)
上式中,只有
Q
\bold Q
Q 是可变的,另外注意到
d
e
t
(
T
i
u
)
=
d
e
t
(
T
i
v
)
=
0
(
i
=
2
,
3
,
…
,
k
)
det(\bold{T}^u_{i})=det(\bold{T}^v_{i})=0\quad(i=2,3,\dots,k)
det(Tiu)=det(Tiv)=0(i=2,3,…,k)
表明并不是所有构造出的正交张量均可以使得
u
⃗
l
i
=
Q
⋅
v
⃗
l
i
(
i
=
1
,
2
,
…
,
k
)
\vec{u}_{l_i}=\bold{Q}\cdot\vec{v}_{l_i}\quad(i=1,2,\dots,k)
uli=Q⋅vli(i=1,2,…,k)
但是,由于上述齐次线性方程组必定存在零解,即在我们所构造出的正交张量的集合中必定至少存在一个
Q
^
\hat{\bold Q}
Q^ 使得
u
⃗
l
i
=
Q
^
⋅
v
⃗
l
i
(
i
=
1
,
2
,
…
,
k
)
\vec{u}_{l_i}=\hat{\bold Q}\cdot\vec{v}_{l_i}\quad(i=1,2,\dots,k)
uli=Q^⋅vli(i=1,2,…,k)
成立。特别的,若问题所考虑的两个向量组是
R
n
R^n
Rn 中满秩的,那么此时所能构造出的
Q
\bold Q
Q 是唯一的,并且它必须满足命题的条件。(证毕)
2. Cauchy 基本表示定理
Cauchy 基本表示定理 以
m
m
m 个向量
v
⃗
i
(
i
=
1
,
2
,
3
,
…
,
m
)
\vec{v}_i(i=1,2,3,\dots,m)
vi(i=1,2,3,…,m)为变元的标量值函数
φ
=
φ
(
v
⃗
1
,
v
⃗
2
,
…
,
v
⃗
m
)
\varphi=\varphi(\vec{v}_1,\vec{v}_2,\dots,\vec{v}_m)
φ=φ(v1,v2,…,vm)
是各向同性的充要条件是
φ
\varphi
φ 可表示为这些向量内积的函数:
φ
=
φ
∗
(
v
⃗
i
⋅
v
⃗
j
)
(
i
,
j
=
1
,
2
,
…
,
m
)
\varphi = \varphi^*(\vec{v}_i\cdot\vec{v}_j)(i,j=1,2,\dots,m)
φ=φ∗(vi⋅vj)(i,j=1,2,…,m)
证明:(充分性)若以向量为自变量的函数
φ
\varphi
φ 可表示为向量内积的函数,即:
φ
=
φ
(
v
⃗
1
,
v
⃗
2
,
…
,
v
⃗
m
)
=
φ
∗
(
v
⃗
i
⋅
v
⃗
j
)
(
i
,
j
=
1
,
2
,
…
,
m
)
\varphi =\varphi(\vec{v}_1,\vec{v}_2,\dots,\vec{v}_m) =\varphi^*(\vec{v}_i\cdot\vec{v}_j)(i,j=1,2,\dots,m)
φ=φ(v1,v2,…,vm)=φ∗(vi⋅vj)(i,j=1,2,…,m)
由于
(
Q
⋅
v
⃗
i
)
⋅
(
Q
⋅
v
⃗
j
)
=
v
⃗
i
⋅
(
Q
T
⋅
Q
)
⋅
v
⃗
j
=
v
⃗
i
⋅
v
⃗
j
(
i
,
j
=
1
,
2
,
…
,
m
)
(\bold{Q}\cdot\vec{v}_i)\cdot(\bold{Q}\cdot\vec{v}_j) =\vec{v}_i\cdot(\bold{Q}^T\cdot\bold{Q})\cdot\vec{v}_j =\vec{v}_i\cdot\vec{v}_j(i,j=1,2,\dots,m)
(Q⋅vi)⋅(Q⋅vj)=vi⋅(QT⋅Q)⋅vj=vi⋅vj(i,j=1,2,…,m)
故
φ
\varphi
φ 为各向同性张量函数。
(必要性)若张量函数
φ
\varphi
φ 是各向同性的,任意选取另外一组向量
u
⃗
1
,
u
⃗
2
,
…
,
u
⃗
m
\vec{u}_1,\vec{u}_2,\dots,\vec{u}_m
u1,u2,…,um ,且满足:
u
⃗
i
⋅
u
⃗
j
=
v
⃗
i
⋅
v
⃗
j
(
i
,
j
=
1
,
2
,
…
,
m
)
\vec{u}_i\cdot\vec{u}_j=\vec{v}_i\cdot\vec{v}_j\quad(i,j=1,2,\dots,m)
ui⋅uj=vi⋅vj(i,j=1,2,…,m)
若均有:
φ
(
v
⃗
1
,
v
⃗
2
,
…
,
v
⃗
m
)
=
φ
(
u
⃗
1
,
u
⃗
2
,
…
,
u
⃗
m
)
\varphi(\vec{v}_1,\vec{v}_2,\dots,\vec{v}_m)=\varphi(\vec{u}_1,\vec{u}_2,\dots,\vec{u}_m)
φ(v1,v2,…,vm)=φ(u1,u2,…,um)
则说明该各向同性张量函数只与向量的内积相关,故可以表示为向量内积的函数:
φ
=
φ
∗
(
v
⃗
i
⋅
v
⃗
j
)
(
i
,
j
=
1
,
2
,
…
,
m
)
\varphi = \varphi^*(\vec{v}_i\cdot\vec{v}_j)(i,j=1,2,\dots,m)
φ=φ∗(vi⋅vj)(i,j=1,2,…,m)
根据前述的引理:
∃
Q
∈
O
3
,
s
.
t
.
v
⃗
i
=
u
⃗
i
⋅
Q
(
i
=
1
,
2
,
…
,
m
)
\exists \bold Q\in\mathcal{O}_3,s.t. \ \vec{v}_i=\vec{u}_i\cdot\bold{Q}\quad(i=1,2,\dots,m)
∃Q∈O3,s.t. vi=ui⋅Q(i=1,2,…,m)
则
φ
(
v
⃗
1
,
v
⃗
2
,
…
,
v
⃗
m
)
=
φ
(
u
⃗
1
⋅
Q
,
u
⃗
2
⋅
Q
,
…
,
u
⃗
m
⋅
Q
)
=
φ
(
u
⃗
1
,
u
⃗
2
,
…
,
u
⃗
m
)
\varphi(\vec{v}_1,\vec{v}_2,\dots,\vec{v}_m)=\varphi(\vec{u}_1\cdot\bold{Q},\vec{u}_2\cdot\bold{Q},\dots,\vec{u}_m\cdot\bold{Q})=\varphi(\vec{u}_1,\vec{u}_2,\dots,\vec{u}_m)
φ(v1,v2,…,vm)=φ(u1⋅Q,u2⋅Q,…,um⋅Q)=φ(u1,u2,…,um)
上式第二个等号根据张量函数的各向同性得到。(证毕)